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ABSTRACT 

 

 

 

As columns age and differ between systems, retention times for comprehensive two-

dimensional gas chromatography (GCxGC) may vary between runs.  In order to properly analyze 

GCxGC chromatograms, it often is desirable to align the retention times of chromatographic 

features, such as analyte peaks, between chromatograms. Previous work [Reichenbach et al., 

Anal. Chem. 2015, 87, 10056] has shown that global, low-degree polynomial transformation 

functions – namely affine, second-degree polynomial, and third-degree polynomial – are 

effective for aligning pairs of two-dimensional chromatograms acquired with dual second 

columns and detectors (GCx2GC).  This work assesses the experimental performance of these 

global methods on more general GCxGC chromatogram pairs and compares their performance to 

that of a recent, robust, local alignment algorithm for GCxGC data [Gros et al., Anal. Chem. 

2012, 84, 9033].  Measuring performance with the root-mean-square (RMS) residual differences 

in retention times for matched peaks suggests that global, low-degree polynomial 

transformations outperform the local algorithm given a sufficiently large set of alignment points, 

and are able to improve misalignment by over 95% based on a lower-bound benchmark of 

inherent variability.  However, with small sets of alignment points, the local method 

demonstrated lower error rates (although with greater computational overhead).  For GCxGC 

chromatogram pairs with only slight initial misalignment, none of the global or local methods 

performed well.  In some cases with initial misalignment near the inherent variability of the 

system, these methods worsened alignment, suggesting that it may be better not to perform 

alignment in such cases.  
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1. INTRODUCTION 

This work assesses the performance of global, low-degree polynomial transformations — 

namely affine, second-degree polynomial, and third-degree polynomial (1) — for retention-time 

alignment between chromatograms obtained by comprehensive two-dimensional gas 

chromatography (GCxGC).  It also compares the performance of these global methods to that of 

a recent, robust, local alignment algorithm for GCxGC chromatograms proposed by Gros et al. 

(2). 

Due to column aging and other run-to-run system variations, retention times may vary 

between GCxGC chromatograms, even when acquired on the same system.  To mitigate this 

issue, it may be necessary to perform chromatographic alignment by mapping the retention times 

of one chromatogram to the times of another chromatogram.  Alignment methods can be 

classified as “global or local, i.e., whether the geometric differences between chromatograms are 

characterized by a single function for the entire chromatogram or by a combination of many 

functions for different regions of the chromatogram” (1). 

Previous work (1) has investigated global, low-degree polynomial transformation 

functions for aligning chromatogram pairs acquired by comprehensive two-dimensional gas 

chromatography with one first-dimension (1D) column and two parallel second-dimension (2D) 

columns (GCx2GC) (3-6). The chromatogram pairs aligned in that work came from the same run 

with one 2D column to a flame ionization detector (FID) and another 2D column to a mass 

spectrometer (MS).  These chromatogram pairs had significant variations in the 2D retention 

times.  For GCx2GC, low-degree polynomial mapping functions outperformed affine 

transformations.  These polynomial functions were able to approach benchmarks for retention-
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time root-mean-square residual error (RMSE) between chromatograms based on consecutive 

replicate sample runs on the same system and detector.  

The present work investigates the performance of these global, low-degree polynomial 

transformations more generally to align GCxGC chromatograms, i.e.:  Does the retention-times 

RMSE between two chromatograms after alignment approach the noise benchmark?  To assess 

these global methods, chromatograms from three sets of data are used for alignment.  Each data 

set varies an important chromatographic parameter: the date and time, the sample, and the 

instrument configuration. This allows the alignment methods to be tested across a wide range of 

situations. The first set of chromatograms was produced from the same diesel sample run over a 

period of about two and a half years.  These chromatograms have moderate initial misalignment 

due to system and column variations.  The second set of chromatograms was produced from 

samples of three different wine vintages that were run in a period of days.  These chromatograms 

have minimal initial misalignment from run-to-run system variability. The last set of 

chromatograms was produced from a single cocoa sample, but on systems with two different 

modulation technologies: flow and thermal. These chromatograms are extremely misaligned due 

to different system configurations, namely, different modulators, column dimensions, and carrier 

gas flow.  

Additionally, this research compares the performance of these global functions to that of 

a high-performing local alignment algorithm (2).  Comparing global and local methods may 

show whether retention-time differences between GCxGC chromatograms are systemic and 

therefore well-suited to simple, global functions, or if the differences are too complex and 

require more sophisticated local methods for alignment.  For this, a local alignment method 

developed by Gros et al. (2) is evaluated.  Although there are other available local alignment 
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methods, their work indicates that compared to two other local alignment methods, their robust 

algorithm “performs the best overall in terms of decreased retention time deviations of matching 

analytes” (2). Gros et al. compared their method to one developed by Pierce et al. (7), which was 

“the first published alignment algorithm for the correction of shifts resulting from uncontrollable 

variations for whole GC × GC chromatograms” (2), and to two-dimensional correlation 

optimized warping (2-D COW) (8) – a multidimensional extension of the original COW 

algorithm (9). As evidenced by these results, the method described by Gros is a high-performing 

local method. 

The experimental methods for testing the various alignment functions follow previous 

work (1).  The effectiveness of the alignment methods is measured in terms of the RMSE of the 

post-alignment retention times for pairs of matched peaks in two GCxGC chromatograms.  The 

error that the alignment methods aim to reach is the benchmark RMSE, computed between pairs 

of chromatograms from consecutive replicate sample runs on the same system. This benchmark 

is based on the assumption that the retention-times differences between consecutive replicate 

sample runs on the same system are unpredictable random noise.  Cross-validation experiments 

are used to evaluate all methods:  affine, second-degree polynomial, third-degree polynomial, 

and the local algorithm from Gros et al. To get an unbiased indicator of performance, these tests 

use one set of matched peak-pairs to fit (or train) the alignment functions, and a different, 

disjoint set to measure (or test) the post-alignment RMSE.  
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2. EXPERIMENTAL SECTION 

 

2.1 Samples 

 Three different sample types are used to assess performance of the data alignment 

algorithms.  The first is a single distillate diesel sample.  The sample was run four different times 

on the same system over a period of about two and a half years to produce a set of GCxGC 

chromatograms.  Each of these runs were far apart in time, so the chromatograms have moderate 

misalignments from column differences, such as aging and replacement.  The lower-bound 

benchmark RMSE was determined from a set of four consecutive replicate runs with the same 

diesel sample on the same system.  

The second set of chromatograms came from samples of three different wine vintages. 

All samples were run within a period of three days as part of a study at the Universidade Federal 

do Rio Grande do Sul related to the characterization of commercial Merlot wines from the 

Brazilian Campanha region.  All samples were the same Merlot brand, but from different years: 

2011, 2012, and 2013.  Each sample was run on the system twice consecutively, which provides 

the replicate runs for determining the alignment benchmark.  Because all runs were within a 

short time period on the same system, the misalignments are relatively small. 

The third set of chromatograms came from a single Trinitario cocoa nib sample from 

Ecuador. The sample was run as part of a study at the Università degli Studi di Torino in Turin, 

Italy, that focuses on the sensomic characterization of cocoa samples from different botanical 

and geographical origins. Two chromatograms were first acquired on the system using a reverse-

inject differential flow modulator (10). The same sample was again run about four months later 

to acquire three more chromatograms, but this time with a loop-type thermal modulator. The 
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flow-modulated GCxGC runs were preliminary experiments under unoptimized conditions, 

making alignment even more difficult. The sample was run consecutively on each modulation 

platform, so there are replicate runs to determine the alignment benchmarks.  Varying the 

modulation technologies between these sets of runs results in chromatograms with extreme 

misalignment, much larger than that seen in the diesel chromatograms, particularly in the 1D. 

 

2.2 Instrumentation 

For analysis of the diesel sample, all run conditions were in accordance with UOP 990 

(11), with a modulation period of 8 s and sampling with a flame ionization detector (FID) at 200 

Hz, on a LECO GCxGC-FID system (LECO Corp., St. Joseph, MI) with Agilent 6890 GC 

(Agilent Technologies, Little Falls, DE).   

For analysis of the volatile fraction of wine samples, headspace solid-phase micro-

extraction (HS-SPME) was performed with one mL of wine, 0.3 g of sodium chloride at 55°C (± 

0.9), and a DVB/CAR/PDMS fiber (Supelco, Bellefonte, PA) in 20 mL headspace screw-capped 

glass vials (12). The system was a LECO GCxGC with an Agilent 6890N and time-of-flight 

mass spectrometric detector (TOFMS). The modulation cycle was 7 s with spectra from 45-450 

m/z acquired at about 100 Hz.  

For analysis of the cocoa nib, the GCxGC experimental conditions were different for 

each modulation technology. The GCx2GC-MS/FID runs with reverse-inject differential flow 

modulation used an Agilent 7890B GC unit coupled to an Agilent 5977A fast quadrupole MS 

detector operating in EI mode at 70 eV, and a fast FID. The modulation cycle was 3 s with 

spectra from 40-240 m/z acquired at about 35 Hz. The GCxGC-MS runs with thermal 

modulation used an Agilent 6890 unit with a Zoex loop-type modulator (Zoex  
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Corp., Lincoln, NE) coupled to an Agilent 5975C MS detector operating in EI mode at 70 eV. 

The modulation cycle was 3 s with spectra from 40-240 m/z acquired at about 29 Hz.   

Additional details of the instrumental conditions for all systems are included in Appendix 

A. 

 

2.3 Data Preprocessing 

Data preprocessing was performed using GC Image GCxGC Edition Software (R2.6 

alpha build) from GC Image, LLC (Lincoln, NE) (13). Examples of processed chromatograms 

for each sample are shown in Appendix C.  

For the diesel chromatograms, phase-shifting, baseline correction, and peak detection 

were performed (14).  Automated bidirectional peak matching created initial lists of 

corresponding peaks between all pairs of chromatograms.  The lists were edited manually to 

increase the number and temporal coverage and to ensure correct correspondences, resulting in a 

total of 112 peaks that were matched across all eight chromatograms (four runs well separated in 

time and four consecutive replicate runs).  Because manual verification was being performed, 

loose matching criteria were used for creating the initial list to increase the number of 

prospective peak-pairs and minimize bias.  After manual editing, the peaks are well-distributed 

across the retention times of the chromatograms (Figure C1). 

For the wine chromatograms, baseline correction and peak detection were performed.  

Using the same process as for the diesel sample, a total of 78 peaks were selected and confirmed 

by MS to correspond across all six chromatograms (Figure C2).  
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Chromatograms acquired from the cocoa sample yielded fewer corresponding peak-pairs 

using these peak matching techniques. After baseline correction and peak detection, 33 peaks 

were confirmed by MS across all five chromatograms (Figures C3 and C4). 

 

2.4 Evaluation Metric 

The primary evaluation metric is the RMSE of the post-alignment retention times across 

the peak sets for pairs of chromatograms.  This metric is used in previous work that evaluates the 

global alignment methods (1).  For a set containing 𝑁𝑝 pairs of corresponding peaks, the RMSE 

is defined as 

𝑅𝑀𝑆𝐸 =  (√
1

𝑁𝑝
∑ (𝑥𝑖 − 𝑥𝑖

′)2𝑁𝑝

1 , √
1

𝑁𝑝
∑ (𝑦𝑖 − y𝑖

′)2𝑁𝑝

1
)     (1) 

where the retention times for a peak in the target and reference chromatograms are (𝑥𝑖 , 𝑦𝑖 ) and 

(𝑥𝑖′, 𝑦𝑖′ ), respectively, with 𝑖 indexing the peaks from 1 to 𝑁𝑝. 

A blob’s retention times indicate its data point with the maximal signal value, i.e., its 

apex. 

 

2.5 Transformation Models 

The global transformation models are identical to those used in previous work (1). The 

first evaluation is with no alignment function applied, i.e. the initial misalignment. This is 

trivially defined as: 

𝑓0(𝑥, 𝑦) = (𝑥, 𝑦).      (2) 

The affine transformation applies scaling, shearing, and translation: 
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𝑓1(𝑥, 𝑦) = (𝑡x +  𝑠x𝑥 + ℎx𝑦,  𝑡y + ℎy𝑥 + 𝑠y𝑦).   (3) 

where (sx,sy) scale in each dimension, (hx,hy) shear, and (tx,ty) are the translation. 

 The second and third-degree polynomials simply add extra terms. For both dimensions, 

the second degree-polynomial adds three more terms: 

𝑓2(𝑥, 𝑦) = (𝑡x + 𝑠x𝑥 + ℎx𝑦 + 𝑎x𝑥𝑦 + 𝑏x𝑥2 + 𝑐x𝑦2, 𝑡y + ℎy𝑥 + 𝑠y𝑦 + 𝑎y𝑥𝑦 + 𝑏y𝑥2 + 𝑐y𝑦2)  (4) 

The third-degree polynomial adds an additional four terms to the second-degree polynomial: 

𝑓3(𝑥, 𝑦) = (𝑡x + 𝑠x𝑥 + ℎx𝑦 + 𝑎x𝑥𝑦 + 𝑏x𝑥2 + 𝑐x𝑦2 + 𝛼x𝑥2𝑦 + 𝛽x𝑥𝑦2 + 𝛾x𝑥3 +

𝛿x𝑦3, 𝑡y + ℎy𝑥 + 𝑠y𝑦 + 𝑎y𝑥𝑦 + 𝑏y𝑥2 + 𝑐y𝑦2 + 𝛼y𝑥2𝑦 + 𝛽y𝑥𝑦2 + 𝛾y𝑥3 + 𝛿y𝑦3)   (5) 

Each global function requires a minimum number of alignment peak-pairs in order to 

determine the parameters:  three peak-pairs for affine, six peak-pairs for second-degree 

polynomial, and ten peak-pairs for third-degree polynomial.  For numbers of peak-pairs larger 

than the minimum number, the optimal parameters minimize the RMSE of fitted pairs.  

The local alignment method of Gros et al. (2) also uses corresponding peak-pairs for 

alignment.  These peak-pairs are referred to as alignment points. This algorithm guarantees that 

these points are perfectly aligned in the final chromatogram produced.  Based on these alignment 

points, displacements for the rest of the data are estimated in both dimensions.  In the 1D, 

displacements are linearly interpolated between alignment points.  In the 2D, displacements are 

estimated using Sibson natural-neighbor interpolation (15), based on Voronoi diagrams.  For 

interpolation in the 2D, the algorithm requires the typical peak width (tpw) for both dimensions.  

This is the number of data-points that make up approximately two standard deviations of a peak 

(16). In the diesel experiments, tpws of 2 and 40 data-points (0.267 min and 0.2 s) were used for 

the 1D and 2D, respectively.  For the wine samples, tpws of 2 and 17 (0.23 min and 0.17 s) data-

points were used.  For the cocoa samples, tpws of 5 (0.25 min) and 6 data-points (0.17 s for flow 
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modulation, 0.21 s for thermal) were used. These tpws were roughly determined by visual 

examination of typical peaks near the center of the chromatogram.   This process follows the 

documentation to users from Gros et al. (16). The final step of the algorithm re-interpolates the 

signal values for all pixels and applies a deformation correction. This part of the algorithm was 

not executed during the cross-validation testing in this paper, because the focus here is on 

comparing the retention-times alignments with those of the global methods and not on the 

separate step of intensity interpolation.  

 

2.6 Evaluation Methodology 

The evaluation methodology follows previous work (1). Within the alignment points 

used, the transformations fit the noise as well as the alignment peaks, which is a problem of 

overfitting. To get an unbiased estimate of a method’s performance, a cross-validation technique 

is employed. The set of corresponding peak-pairs is partitioned into two disjoint sets: a training 

and testing set. The training set is used as the alignment points for fitting the methods, and the 

testing set is used to measure their performance. Measuring the error across testing-set peak-pairs 

after alignment is a good unbiased indicator of the method’s performance, as the transformation 

was not fit to these peak-pairs and their inherent noise.  

The experiments are run for every training set size from 3 peak-pairs (the minimum size 

for affine transformations) to all of the matched peak-pairs, at which point the test set is null.  

For each training set size, 100 trials are run.  The training and testing sets are randomly 

generated at each trial (and are disjoint complements of the peak-pairs set). Because of the 

random selection of peak-pairs, the training set may not be well-distributed across the entire 

chromatogram. The alignment is also done both forward and backward, i.e., peaks from 
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chromatogram 1 are fit to those in chromatogram 2 and vice versa.  The reported RMSE for each 

training set size is the average RMSE over all 200 trials (with 100 in each direction). 

 

2.7 Performance Benchmarks 

The global alignment methods are assessed in two ways.  First, does the method approach 

the benchmark error set by the consecutive replicate runs?  Second, does the method perform 

better than the local alignment algorithm?  For the first question, the misalignment between 

consecutive replicate runs can be used as a benchmark indicating the lower bound of alignment 

performance due to systemic noise.  Any misalignment between two replicate chromatograms 

acquired one after another with the same sample on the same system can be considered the level 

of random retention-times noise inherent to the system itself.  

The degree to which an alignment method approaches the benchmark is measured by its 

percent improvement 𝐼𝑝. For a specific alignment method, let 𝑆 be the set of post-alignment 

average RMSEs for every testing set size and min{𝑠} , 𝑠 ∈ 𝑆, be the best average RMSE achieved 

for any testing set size.  Then that method’s percent improvement is defined as 

𝐼𝑝 =
𝑚0−min

𝑠∈𝑆
{𝑠}

𝑚0−𝑚𝑏
× 100      (6) 

where 𝑚0 is the average testing set RMSE over all trials with no alignment function applied (i.e., 

the initial misalignment) and 𝑚𝑏 is the benchmark RMSE from consecutive replicate runs.  

Comparing global performance to the local method is done in multiple ways.  If the 

alignment methods have a RMSE less than that of the local method, they can be said to perform 

better.  The computational overhead (i.e. run-time) of an alignment algorithm is another useful 

comparison. It is also important to take into consideration how many peak-pairs are required in 
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order to achieve (or nearly achieve) the method’s maximal performance.  It may be desired to 

have a method that can align two chromatograms relatively well using fewer alignment points, 

rather than one that can achieve a slightly smaller RMSE but which requires more alignment 

points. 

Ideally, the methods should be compared on their performance for specific data sets of 

interest.  For generality, the data sets used here offer a wide range of initial misalignment — 

from negligible to severely misaligned — so the alignment performance can be considered 

relative to the initial misalignment. Additionally, each data set varies a different GCxGC 

chromatogram acquisition parameter. The first varies the analysis over time, the second varies 

the sample, and the third varies the GCxGC instrument with different modulation platforms.  

 

2.8 Execution Methodology 

Experiments were run on the Crane cluster of the Holland Computing Center (17) located 

on the University of Nebraska-Lincoln campus. The cluster has a total of 452 nodes with 64 GB 

of RAM each.  In each of the 16 cores within a single node, there are two Intel Xeon E5-2670 

2.60GHz processors. 

All alignment methods were implemented in MATLAB. Part of the MATLAB 

implementation of the local algorithm from Gros et al. was parallelized in order to run much 

faster across 16 cores on the Crane cluster.  Even with the speed boost, and without executing the 

resampling portion of the algorithm, the local method was more computationally expensive than 

the simpler global functions.   

For the case of 105 peak-pairs for aligning two 1199x1600 diesel chromatograms, fitting 

the second-degree polynomial to the peak-pairs and computing the transformation for every data 
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point required 0.1906 s.  By comparison, the local algorithm required 8.5971 s to compute the 

displacements for every data point.  Of course, the computation-time difference is smaller if 

fewer retention times must be transformed (e.g., as would be required to transform a template).   

However, as these timing results illustrate, the global function requires significantly less 

computation for larger alignment problems. 
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3. RESULTS AND DISCUSSION 

 

3.1 Time-Varied Data Results 

Chromatograms acquired from the diesel sample were used to test the alignment methods 

on time-varied data.  Tests were performed on chromatograms from four consecutive replicate 

runs on the same diesel sample to establish a benchmark for the alignment methods.  These four 

chromatograms are labeled runs 17, 18, 19, and 20.  The initial misalignment was recorded for 

consecutive runs:  17 and 18, 18 and 19, and 19 and 20.  The results from the cross-validation 

benchmark tests between runs 18 and 19 are shown in Figure 1.  These graphs show the 

retention-time RMSE for the testing set of peak-pairs for each alignment method as a function of 

the training-set size, i.e., the number of alignment points used. Each alignment method is 

represented by a different colored line.  The figures for the training sets and additional replicate 

results can be found in Appendix B (Figure B1).  

In both chromatographic dimensions, as the training set size increases, the RMSE of the 

global functions generally decreases for the testing sets.  This makes sense because larger 

training sets yield better estimates of the global misalignment (because overfitting to noise is 

reduced), producing the decrease seen in testing-set error.  

The RMSE of consecutive 

replicate runs, which provides our 

benchmark error, is the blue line in Figure 

1.  The 1D graph (Figure 1a) shows that 

none of the alignment algorithms are able 

to improve upon this initial misalignment.  

 

Figure 1. Cross-validation retention-time RMSE results as a 

function of training set size for consecutive replicate runs of 

a diesel sample.  The RMSE is shown for: a) 1D with the 

testing set and. b)  2D with the testing set. 
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In the 2D (Figure 1b), there is only a small improvement of less than 0.01 s.  This supports the 

claim that the initial misalignment of consecutive replicate runs indicates the inherent lower-

bound limits on any alignment algorithm.  

In the 1D, with no alignment function applied, the RMSE averages 0.0375 min, which is 

the maximum initial misalignment seen in the 1D across the three replicate tests. In the 2D the 

initial misalignment is about 0.0131 s.  Across all three pairs of replicate runs, the average 

misalignment in the 1D is 0.0243 min which is less than the modulator sampling noise level of 

0.038 min.i  The peaks in the diesel sample chromatograms are narrow in the 1D, with a tpw of 

only about 2 modulations, which affects the choice of an alignment benchmark. An alignment 

method cannot be expected to achieve an RMSE better than the sampling noise, so 0.038 min is 

the benchmark value in the 1D.  Across all three pairs of replicate runs, the average misalignment 

in the 2D is 0.0125 s.  This value is the 2D benchmark RMSE for the alignment methods being 

tested. 

Next, the cross-validation tests were 

run on every pair-wise combination of four 

chromatograms acquired over 2.5 years.  

Due to column aging, these chromatograms 

exhibit moderate misalignments.  The 

results from one of these pair-wise tests are 

shown in Figure 2.  The names of the 

                                                 
i The distillate analyses have a modulation cycle (𝑃𝑀) of 8 s or 𝑃𝑀 = 0.13 min.  The standard deviation for random 

uniformly distributed residuals with respect to a single modulation interval is 12−1/2 × 𝑃𝑀, which is about 0.038 min 
for these data.  This is the RMS retention-time noise level from the sampling effect of modulation and has 
implications for the benchmark RMSE in the 1D. 

 

Figure 2. Cross-validation retention-time RMSE results as a 

function of training set size for chromatograms produced 

from the same diesel sample about 2.5 years apart. RMSE 

is shown for: a) 1D with the testing set and b) 2D with the 

testing set. The names of the samples correspond to the 

acquisition date (January 20, 2011 and June 14, 2013). 
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samples (January 20, 2011, and June 14, 2013) indicate the dates on which they were run; so, the 

chromatograms aligned in this figure were acquired about 2.5 years apart.  Before any alignment 

is applied (the blue line in Figure 2), the RMSE is about 0.76 min in the 1D and 0.24 s in the 2D. 

The “None” function is excluded from plot (2a) to focus on performance of the alignment 

models. 

The testing-set plots in Figure 2 show how the transformations affect peak-pairs that were 

not used for fitting, for an unbiased evaluation.  In both dimensions, significant improvements 

are seen after applying both the global and local methods to the alignment of chromatograms 

012011 and 061413.  In the 1D, the third-degree polynomial transformation achieves the smallest 

RMSE of 0.0641 min compared to the largest RMSE of 0.0871 min for the local algorithm. The 

(best-performing) third-degree polynomial (0.0641 min) has a percent improvement of 𝐼𝑝 =

96.4% using the benchmark of 0.038 min. Though it has the largest RMSE of the methods 

tested, resulting in a percent improvement of 𝐼𝑝 = 93.2%, Gros’ algorithm only requires about 

10 peak-pairs to approach its peak performance. This is a smaller training-set size than required 

for the global methods to reach peak performance.  

In the 2D, the third-degree polynomial also achieves the best peak performance, with a 

minimum RMSE of 0.017 s (𝐼𝑝 = 98%), nearing the 0.0125 s benchmark, compared to 0.0346 s 

(𝐼𝑝 = 90.3%) for the local method. In the 2D, Gros’ algorithm takes much longer to reach its 

peak performance at around 85 peak-pairs, but it has a lower RMSE than the global functions 

when the training set size is small.  

Training-set data and graphs similar to Figure 2 for all other cross-validation experiments 

can be found in Appendix B (Figure B2). The patterns discussed with Figure 2 are consistent 

across most of the experiments. Table 1 summarizes the results from all six cross-validation 



16 

 

 

experiments run with the non-replicate diesel chromatograms. Under “None” is the average 

initial misalignment (𝑚0 in Eq. (6)). For each experiment, the minimum average testing set 

RMSE (min{𝑠} , 𝑠 ∈ 𝑆, in Eq. (6)) for each alignment method is shown. The bottom two rows 

present the averages for the minimum RMSE and percent improvement. Note that the top-

performing method in terms of average minimum RMSE may not be the best in terms of average 

percent improvement (and vice versa), because the average percent improvement depends 

heavily on initial misalignment. Even if a method averages the smallest RMSE, it may not have 

the smallest RMSE in cases that the misalignment is very small, which negatively affects its 

average percent improvement.  

On average, all three global alignment methods are able to reach a better peak 

performance and percent improvement than the local algorithm in both dimensions. The third-

degree polynomial averages a 9.3% greater percent improvement than Gros’ algorithm in the 1D, 

  Minimum Testing-Set RMSE Reached by Alignment Methods in the 1D (min) and 2D (s) for Diesel 

Chromatograms 

Chromat-

ograms 

None (Avg.) Affine Poly2 Poly3 Gros et al. 
1D 2D 1D 2D 1D 2D 1D 2D 1D 2D 

012011-

061413 

0.7563 0.2414 0.0767 0.0344 0.0806 0.0184 0.0641 0.0170 0.0871 0.0346 

012011-

090912 

0.1024 0.3982 0.0574 0.0147 0.0583 0.0130 0.0592 0.0131 0.0640 0.0435 

012011-

100412 

0.0800 0.0569 0.0502 0.0257 0.0460 0.0225 0.0488 0.0223 0.0612 0.0283 

061413-

090912 

0.8353 0.1819 0.0856 0.0367 0.0868 0.0223 0.0747 0.0221 0.0902 0.0209 

061413-

100412 

0.7940 0.2905 0.0763 0.0558 0.0783 0.0331 0.0511 0.0282 0.0996 0.0558 

090912-

100412 

0.0770 0.4386 0.0631 0.0292 0.0635 0.0247 0.0644 0.0241 0.0671 0.0578 

Average 0.4408 0.2679 0.0682 0.0328 0.0689 0.0223 0.0604 0.0211 0.0782 0.0402 

Average % Improvement 76.7 87.7 77.8 93.1 77.3 93.6 68.0 86.0 

Table 1. Minimum testing-set RMSE for each alignment method in both the first and second chromatographic 

dimensions for all six experiments with the non-replicate chromatograms from the diesel sample. The “None” columns 

are the average initial misalignments, not the minimum. The third-degree polynomial function reaches the lowest error 

on average, and Gros et al. has the highest error on average.  
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and 7.6% greater in the 2D. In the 1D, the average percent improvement for all alignment 

methods is noticeably worse than the experiment discussed in Figure 2. For chromatogram pairs 

with a less significant initial misalignment in the 1D (012011-090912, 012011-100412, and 

090912-100412 in Table 1), the alignment methods tend to reach similar minimum RMSE values 

to the experiments with larger initial misalignments, causing the lower average percent 

improvements overall. For experiments with large misalignments (> 0.7 min), like in Figure 2, 

the third-degree polynomial is consistently able to achieve a percent improvement over 95%. In 

the 2D, both the second and third-degree polynomials average a percent improvement over 93% 

for all experiments.  

There is a clear tradeoff in terms of the number of alignment points used and the 

minimum RMSE reached for both the local and global methods. If using a very small number of 

alignment points (~5), it may be preferable to use Gros’ algorithm because it starts out at a much 

lower error than any of the global methods. Though the local method performs relatively well 

with a small number of alignment points, it is outperformed in both dimensions by the global 

methods when a larger numbers of alignment points are available. The number of peak-pairs at 

which the global methods overtake the local method varies between algorithms, and is larger in 

the 1D than the 2D. With just under 10 points or more, the affine transformation becomes a better 

choice, attaining a clear performance gain in both dimensions, on average. With around 30 pairs 

or more, the second-degree polynomial performance overtakes the local method. The third-

degree polynomial improves upon the local method when about 50 alignment points or more are 

available. Though the third-degree polynomial is also able to outperform the second-degree (with 

~55 points), the performance gain is small. In terms of percent improvement, the second-degree 

actually averages better than the third-degree in the 1D, and is within 1% in the 2D. Therefore, for 
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computational simplicity and because fewer alignment points are required, it may be preferable 

to use the second-degree function. This result is similar to that seen in previous work for 

GCx2GC (1). 

 

3.2 Sample-Varied Data Results 

Chromatograms acquired from the three wine samples were used to test the alignment 

methods on sample-varied data. The benchmark RMSE for wine sample chromatographic 

alignment is established with pairs of consecutive replicate runs of the 2011, 2012, and 2013 

vintages.  The results for the 2011 sample replicate runs are shown in Figure 3.  Training-set data 

and additional replicate runs can be found in Appendix B (Figure B3). The titles of the graphs 

indicate which two chromatograms were aligned with the year of the sample followed by an “R” 

and the run number (1 or 2).  Figure 3 shows aligned chromatograms for runs 1 and 2 from the 

2011 sample.  As seen in the testing-set plots, none of the alignment methods are able to improve 

on the initial misalignment.  This indicates there is no systematic retention-time difference 

between the replicate runs, only retention-time noise. In the 1D (Figure 3a), the RMSE with no 

alignment is about 0.0368 min, which is the maximum for any of the replicate sample runs.  In 

the 2D (Figure 3b), the initial misalignment 

is about 0.0137 s.  Over the three sets of 

replicate runs from 2011, 2012, and 2013, 

the average misalignment in the 1D is 

0.03037 min, and in the 2D is 0.01725 s.  

 

Figure 3. Cross-validation retention-time RMSE results as a 

function of training set size for consecutive replicate runs of 

the 2011 wine sample. The names correspond to the vintage 

year of the wine sample.  
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The average RMSE in the 1D is less than the modulation sampling noise level of 0.034 min.ii The 

peaks detected in the wine chromatograms are very narrow, with a tpw of about 2 modulations, 

so the sampling noise must be considered. Therefore, 0.034 min is used as the 1D benchmark 

RMSE for the alignment of the wine sample chromatograms. The average misalignment in the 

2D of 0.01725 s is the other benchmark for the alignment methods. 

The chromatograms produced from the second run of each year’s sample were tested in 

every pair-wise combination with the other two years.  All these samples were run within a span 

of three days, so the initial misalignment between them is small, due mainly to run-to-run 

random variations and sample differences for the different vintages.  The results from aligning 

chromatograms from the 2011 and 2012 samples are shown in Figure 4.  The RMSE between the 

chromatograms without any alignment functions applied is only about 0.0344 min in the 1D 

(Figure 4a) and 0.02 s in the 2D (Figure 4b).  Both these values are just above the benchmark 

inherent noise threshold in each dimension, suggesting that the alignment methods shouldn’t be 

expected to improve much upon the initial misalignment.  This is apparent in both the 1D and 2D 

testing-set plots which shows that none of the methods are able to improve the alignment more 

than a few thousandths of a minute and 

second, respectively. The minimum RMSE 

reached by Gros’ algorithm in the 1D is 

slightly worse than the initial 

misalignment.  

                                                 
ii The wine analyses have a modulation cycle of 7 s or 𝑃𝑀 = 0.117 min, so the RMS retention-time noise level from 
the sampling effect of modulation is 0.034 min. 

 

Figure 4. Cross-validation retention-time RMSE results as a 

function of training set size for alignment of two different 

wine sample chromatograms. The names correspond to the 

vintage year of the wine sample. 
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A table of results and graphs for all other cross-validation experiments can be found in 

Appendix B (Table B1, Figures B4 and B5). On average, the initial misalignment in both 

chromatographic dimensions is close to the benchmark values and, as a result, none of the 

alignment methods achieve notable improvements. The third-degree polynomial even averages a 

slightly greater minimum value than the initial misalignment in the 1D. These data then suggest 

that no method, global nor local, is able to perform well. If two chromatograms have only a small 

initial misalignment, it may be better not to perform any alignment operation at all. 

 

3.3 Instrument-Varied Data Results 

Chromatograms acquired from the single cocoa sample were used to test the alignment 

methods on data obtained with differing instruments. The benchmark RMSE values for the cocoa 

chromatogram alignments are established using two replicate sample runs with the flow 

modulator and three replicate runs with the thermal modulator. The results of the second 

replicate cross-validation experiment with the thermal-modulator chromatograms are shown in 

Figure 5. Training-set data and additional replicate runs can be found in Appendix B (Figure 

B6). As expected, only negligible improvements in alignment are seen from any method in either 

chromatographic dimension. In the 1D (Figure 5a), the average initial misalignment for this 

experiment is about 0.0438 min which is the 

maximum seen in any of the replicate 

experiments. In the 2D (Figure 5b), the 

initial misalignment is about 0.026 s.  

Across all three replicate sample run 

experiments, the average misalignment in 

 

Figure 5. Cross-validation retention-time RMSE results as 

a function of training set size for consecutive replicate runs 

of a cocoa sample using a thermal modulator. 



21 

 

 

the 1D is 0.0412 min, which is used as the benchmark. The modulation sampling noise level for 

these chromatogramsiii does not greatly affect the benchmark because the peaks detected, with a 

tpw of about 5 modulations, are wider than those seen from the diesel and wine samples. The 

average 2D misalignment is 0.0257 s, which is used as the benchmark.  

Pairs of chromatograms, one from the two flow-modulator runs and one from the three 

thermal-modulator runs, were tested in every combination, totaling six experiments. The 

chromatograms in each experiment were acquired with two different modulators, so the initial 

misalignment is severe, especially in the 1D because of the constraints posed by the differential 

flow modulation dynamics to carrier gas volumetric flow. The results from aligning the second 

flow-modulator chromatogram to the first thermal-modulator chromatogram are shown in Figure 

6. The initial misalignment in the 1D (the blue line) is excluded from plot (Figure 6a) because it 

is so large. In the 2D, the initial misalignment hovers around 0.5 s, and is also excluded from plot 

(Figure 6b).  

 In Figure 6, every method offers significant improvement in both dimensions. In the 1D, 

the affine transformation function reaches the lowest error of 0.488 min (percent improvement 

𝐼𝑝 = 98.1%), just in front of Gros’ 

algorithm at 0.503 min (𝐼𝑝 = 98.0%). The 

second and third-degree polynomial 

transformations are about the same at 

0.537 and 0.527 min (𝐼𝑝 = 97.9%), 

respectively. The percent improvement 

                                                 
iii The cocoa analyses have a modulation cycle of 3 s or 𝑃𝑀 = 0.05 min, so the RMS noise level from the sampling 
effect of modulation is 0.0144 min. 

 

Figure 6. Cross-validation retention-time RMSE results as 

a function of training set size for chromatograms produced 

from the same cocoa sample but using two different 

modulation platforms.  
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from every method is good, even though the benchmark of 0.0412 min is not achieved (perhaps 

because the initial misalignment is so large).  

That the affine transformation performs best suggests that the higher-degree polynomials 

were not fit with enough alignment points to reach peak performance. Similar to the diesel 

results, with fewer than 10 alignment points the local method outperforms the global methods in 

terms of RMSE. Around 10 peak-pairs, though, the affine transformation surpasses Gros’ 

algorithm for a slight performance gain. Because the total number of corresponding peaks across 

the cocoa chromatograms is only 33, significantly fewer than for the diesel or wine 

chromatograms, the second and third-degree polynomials do not reach a lower RMSE than the 

affine transformation or local method. With training sets around 30 peak-pairs, though, they do 

approach these performances. Figure 6 is a good example of the potential advantages to using 

Gros’ algorithm or the affine transformation when few alignment points are available.  

In the 2D, the second-degree polynomial reaches the lowest RMSE of 0.038 s (𝐼𝑝 =

97.4%), followed by Gros’ algorithm at 0.043 s (𝐼𝑝 = 96.3%), the third-degree polynomial at 

0.046 s (𝐼𝑝 = 95.7%), and the affine transformation at 0.052 s (𝐼𝑝 = 94.3%). Again, every 

alignment method attains a high percent improvement. The peak RMSE from the second-degree 

polynomial (0.038 s) also approaches the benchmark set at 0.0257 s. In the 2D, the second-degree 

polynomial converges to its peak performance with fewer peak-pairs than in the 1D, allowing it 

to surpass performance of the affine transformation and Gros’ algorithm with about 15 alignment 

points. In terms of percent improvement, this performance gain is small. The third-degree 

polynomial does not have enough alignment points to be well fit, causing a slightly worse 

performance than both the second-degree polynomial and local method. 
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Table 2 shows a summary of the results from all six cross-validation experiments. Graphs 

from the other experiments are in Appendix B (Figure B7). The average case performance of the 

global and local methods closely mirrors the performances discussed with Figure 6. Although a 

global function was able to, on average, outperform the local method (affine in 1D and second-

degree polynomial in 2D), the performance gain is minimal in terms of percent improvement. All 

methods perform well, averaging a percent improvement over 95%. In line with conclusions 

from the diesel alignment results, it may be preferable to use Gros’ algorithm if very few 

alignment points are available, affine transformation when more than a few alignment points are 

available, and polynomial transformation when 30 or more alignment points are available. 

  

  Minimum Testing-Set RMSE Reached by Alignment Methods in the 1D (min) and 2D (s) for Cocoa 

Chromatograms 

Chromat-

ograms 

None (Avg.) Affine Poly2 Poly3 Gros et al. 
1D 2D 1D 2D 1D 2D 1D 2D 1D 2D 

Flow 1-

Thermal 1 23.2438 0.5204 0.4897 0.0491 0.5417 0.0332 0.5385 0.0358 0.5159 0.0408 

Flow 1-

Thermal 2 23.2396 0.5094 0.4822 0.0383 0.5265 0.0265 0.5159 0.0324 0.5268 0.0321 

Flow 1-

Thermal 3 23.2261 0.5271 0.4783 0.0455 0.5352 0.0273 0.5378 0.0362 0.5195 0.0378 

Flow 2-

Thermal 1 23.2566 0.4952 0.4879 0.0524 0.5367 0.0379 0.5274 0.0457 0.5025 0.0431 

Flow 2-

Thermal 2 23.2523 0.4842 0.4801 0.0420 0.5226 0.0316 0.5102 0.0427 0.5139 0.0355 

Flow 2-

Thermal 3 23.2389 0.5018 0.4757 0.0481 0.5304 0.0308 0.5276 0.0450 0.5057 0.0404 

Average 23.2429 0.5064 0.4823 0.0459 0.5322 0.0312 0.5262 0.0396 0.5141 0.0383 

Average % Improvement 98.1 95.8 97.9 98.8 97.9 97.1 98.0 97.4 

Table 2. Minimum testing set RMSE reached by each alignment method in both the first and second chromatographic 

dimensions for all six experiments run with the chromatograms from the cocoa sample. The “None” columns are the 

average initial misalignments, not the minimum. All methods perform well as indicated by the high percent 

improvements. 
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4. CONCLUSIONS 

This work indicates that low-degree polynomial transformation functions will, on 

average, outperform the local alignment method developed by Gros et al., if given a sufficient 

number of alignment points for a good fit.  Looking at cross-validation tests run on diesel 

chromatograms, which were acquired at varying times, the global methods consistently achieve a 

lower peak RMSE than the local method. The cross-validation experiments run with the cocoa 

sample chromatograms, acquired with differing instrument configurations, support this 

conclusion, although the local algorithm still averaged a percent improvement of over 97% in 

both dimensions. In general, although the third-degree polynomial transformation consistently 

reaches the lowest minimum RMSE with sufficient fitting (requiring about 55 alignment points), 

the performance gain over the second-degree polynomial is not significant and may not be worth 

the extra computational cost.  

The tests run on GCxGC chromatograms acquired from varying wine samples indicate 

that no alignment method, global or local, is able to significantly improve alignment when initial 

misalignment is close to the retention-times noise level. The third-degree polynomial and local 

method actually made the alignment slightly worse in several cases, suggesting that when 

misalignment is very small, it may be better not to apply any alignment operation. 

This research suggests that for the purpose of chromatographic alignment between two 

GCxGC chromatograms, it may be preferable to use global, low-degree transformation functions 

such as second-degree polynomials rather than local methods when a sufficient number of 

alignment points are available. These global transformations show a better average performance 

and incur less computational overhead. However, if working with fewer than 10 alignment 

points, it may be better to use Gros’ algorithm.  In order to outperform Gros’ algorithm, the 
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affine transformation needed as many as 10 alignment points and the second-degree polynomial 

needed around 30 points. 

The training set size at which the alignment methods reach their peak performance may 

be affected by how the alignment points are chosen. In the experiments presented here, these 

peak-pairs were chosen randomly from a large, well-distributed set, but choosing a subset that is 

better distributed across the range of retention times in a chromatogram may reduce the training 

set size required to approach peak performance. For the global methods, more distributed 

alignment points would allow the systemic misalignment trends to be modeled with fewer points. 

Although this would also help the local method, it is already approaching peak performance with 

very few points in most cases, suggesting that better distributed alignment points might reduce 

the set size at which the performance of the global methods overtakes the local method. 

A final consideration is the problem of incorrect alignment points.  With a local method, 

the associated error is localized but larger; whereas with a global method the associated error is 

smaller but global.  If alignment point errors are possible, a global method with many alignment 

points to regularize the fit may be preferred. 
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APPENDIX A. EXPERIMENTAL CONDITIONS 

A.1 Instrumentation for Diesel Sample Runs 

For the analysis of the diesel sample, all run conditions were in accordance with UOP 

990, with a modulation period of 8 s and sampling with a flame ionization detector (FID) at 200 

Hz.  Diesel sample runs used a LECO GC x GC FID system equipped with an Agilent 6890 GC 

and LECO GC x GC accessories (modulator and secondary oven). 

 

A.2 Instrumentation for Wine Sample Runs 

Wine samples (750 mL each) were protected from direct light and stored in a cool place. 

After opening the bottles, smaller volumes of each wine were placed in 200 mL screw-capped 

dark glass flasks and were frozen (-18°C) in order to avoid loss of volatiles until 

chromatographic analyses. Headspace microextraction (HS-SPME) was performed with one mL 

of wine, 0.3 g of sodium chloride at 55°C (± 0.9), and a DVB/CAR/PDMS fiber (Supelco, 

Bellefonte, PA) in 20 mL headspace screw-capped glass vials. SPME fibers were previously 

conditioned according to manufacturer´s instructions. The system employed for GC × GC was an 

Agilent 6890N (Agilent Technologies, Palo Alto, CA) with a time-of-flight mass spectrometric 

detector (TOFMS) equipped with a CombiPAL autosampler (CTC Analytics, Zwingen, 

Switzerland), a secondary oven for the second chromatographic column, and a quadjet cryogenic 

modulator (two cold and two hot) where cold jets were supported by nitrogen gas cooled with 

liquid nitrogen. Desorption took place at 250°C, in the injection port, where the fiber was kept 

for five (5) minutes. Other parameters employed were: modulation period of 7 s, oven 

temperature offset of 10°C, transfer line temperature of 300°C, detector temperature 240°C, 

ionization energy of 70 eV, detector of voltage 1500 V, mass range 45 to 450 m/z, and data 
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acquisition rate of 100 Hz. Carrier gas was helium (purity 5.0, White Martins, Pinhais, Brazil) 

and its linear velocity was 1.0 mL min-1. Stationary phase of the first dimension column (1D) 

was a DB-WAX (30 m × 0.25 mm × 0.25 μm) and a DB-17ms (1.70 m × 0.18 mm × 0.18 μm) in 

the second dimension (2D). 

 

A.3 Instrumentation for Cocoa Sample Runs 

For the analysis of the volatile fraction of cocoa samples, headspace solid-phase micro-

extraction (HS-SPME) was performed on 1.00 g of cocoa nibs finely milled with liquid nitrogen 

at 45°C (± 0.9) for 40 minutes. A DVB/CAR/PDMS fiber (Supelco, Bellefonte, PA) was used in 

20 mL headspace screw-capped glass vials. The GC x 2GC-MS/FID runs with reverse-inject 

differential flow modulation used an Agilent 7890B GC unit coupled to an Agilent 5977A fast 

quadrupole MS detector (Agilent, Little Falls, DE) operating in EI mode at 70 eV, and a fast 

FID. The GC transfer line was set at 270°C. A scan range of 40-240 m/z with a scanning rate of 

20,000 amu/s was used, and the spectra generation frequency was 35 Hz. The FID base 

temperature was 280°C, with H2 flow of 40 mL/min, air flow of 240 mL/min, and make-up (N2) 

of 450 mL/min, at a sampling frequency of 150 Hz. The system was equipped with reverse-inject 

differential flow consisting of one CFT plate connected to a three-way solenoid valve that 

receives a controlled supply of carrier gas (helium) from an auxiliary electronic pressure control 

module (EPC). Pulse time was set at 200 ms and modulation period of 3 s. The 1D used a 

SolGel-Wax column (100% polyethylene glycol)(30 m × 0.25 mm dc, 0.25 μm df) from SGE 

Analytical Science (Ringwood, Australia) coupled with a 2D OV1701 column (86% 

polydimethylsiloxane, 7% phenyl, 7% cyanopropyl) (5 m × 0.25 mm dc, 0.25 μm df) from Mega 

(Legnano, Milan, Italy). Cocoa volatiles extracted by HS-SPME were thermally desorbed into 
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the GC split/splitless injector port in split mode, with split ratio 1:20, and injector temperature 

250°C. The carrier gas was helium at a constant flow of 0.3 mL/min in the 1D and 20 mL/min in 

the 2D. The temperature program went from 50°C (0.5 min) to 250°C at 2°C/min (5 min). 

Connection between the 2D column and the two parallel detectors was by a three-way unpurged 

splitter (G3181B, Agilent, Little Falls, DE). The deactivated capillary to the MS detector was 

0.17 m long with 0.1 mm dc, and to the FID detector was 1.3 m long with 0.45 mm dc. Split ratio 

was 25:75 (MS:FID). 

The GC x GC-MS runs with thermal modulation used an Agilent 6890 unit coupled to an 

Agilent 5975C MS detector (Agilent, Little Falls, DE) operating in EI mode at 70eV. The GC 

transfer line was set at 270°C with scan range 40-240 m/z and a scanning rate of 12,500 amu/s. 

The spectra generation frequency was 29 Hz. The system was equipped with a two-stage KT 

2004 loop-type thermal modulator (Zoex Corporation, Houston, TX) cooled with liquid nitrogen. 

The hot jet pulse time was set at 250 ms and used a modulation period of 3 s. The fused silica 

capillary loop dimensions were 1.0 x 0.1 mm (inner diameter). The 1D used a SolGel-Wax 

column (100% polyethylene glycol)(30 m × 0.25 mm dc, 0.25 μm df) from SGE Analytical 

Science (Ringwood, Australia) coupled with a 2D OV1701 column (86% polydimethylsiloxane, 

7% phenyl, 7% cyanopropyl) (1 m × 0.1 mm dc c, 0.10 μm df) from Mega (Legnano, Milan, 

Italy). Cocoa volatiles extracted by HS-SPME were thermally desorbed into the GC 

split/splitless injector port in split mode, with split ratio 1:20, and injector temperature 250°C. 

The carrier gas was helium at a constant flow of 1.8 mL/min. Temperature program was from 

40°C (1 min) to 200°C at 3°C/min and to 250°C at 10°C/min (5 min). 
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APPENDIX B. ADDITIONAL RESULTS 

 All figures in this appendix use the same legend as the main body of the paper, shown 

below. 

 

 

B.1 Additional Results for Time-Varied Data 

Figure B1 shows the results for the alignment of two additional pairs of consecutive 

replicate diesel sample runs, along with additional training-set plots for the chromatogram pair 

presented in the paper. The misalignment between consecutive replicate runs indicates a 

benchmark for the lower bound of alignment performance due to systemic noise. Chromatogram 

pair 18 and 19 were discussed in the paper. For consecutive replicate diesel sample runs 17 and 

18, the 1D misalignment is about 0.0176 min, and the 2D is about 0.0156 s. For replicate runs 19 

and 20 the 1D misalignment averages 0.0177 min, and the 2D is about 0.0089 s.  These 1D values 

are less than the modulator sampling noise level for the diesel sample chromatograms (calculated 

in the paper). The 2D misalignments are in line with the benchmark used in the paper. 

Figure B2 shows the performance of the global and local algorithms for the alignment of 

all six pairings of diesel sample chromatograms acquired over various periods of time. (Testing-

set figures for pairing 012011 and 061413 are presented in the paper.)  In each test, every method 

offers significant improvements in alignment for both chromatographic dimensions. In the 1D, 

the initial misalignment of the chromatogram pairs ranges from about 0.07 min to over 0.83 min, 

many times greater than the benchmark. The third-order polynomial tends to reach around 0.06 
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min whereas the affine and second-order polynomial reach just under 0.07 min. The local 

algorithm averages just under 0.08 min.  

In the 2D, the initial misalignment ranges from 0.06 s to about 0.44 s. The third-order 

polynomial reaches the lowest RMSE in all but one of the results from Figure S4, averaging 

about 0.02 s. The second-order polynomial is about the same. The affine and local methods still 

improve the initial misalignment, but only get to about 0.03 and 0.04 s, respectively. These 

results are consistent with those presented in the paper.

 

 

    

 

Figure B1. Cross-validation retention-time RMSE results as a function of training set size for consecutive replicate 

runs of a diesel sample. From left to right, the RMSE is shown for the 1D with the training set, 1D with the testing 

set, 2D with the training set, and 2D with the testing set. The performance of the local algorithm from Gros et al. is 

only shown in the testing plots because it is guaranteed to perfectly align the training set. The top row is for 

chromatograms from diesel runs #17 and #18, the middle row is for runs #18 and #19, and the bottom row is for 

runs #19 and #20. 
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Figure B2. Cross-validation retention-time RMSE results as a function of training set size for chromatograms 

produced from the same diesel sample. From left to right, the RMSE is shown for the 1D with the training set, 1D 

with the testing set, 2D with the training set, and 2D with the testing set. The names of the samples correspond to the 

acquisition date (i.e. for the top row January 20, 2011 and September 9, 2012). Each row is for a different 

chromatogram pair. 
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B.2 Additional Results for Sample-Varied Data 

Figure B3 shows the results for alignment of two additional pairs of consecutive replicate 

wine sample runs, along with additional training-set figures for the pair presented in the paper. 

The 2011 pair is discussed in the paper. For the 1D, the benchmarks from both additional pairs 

are less than the modulation sampling noise level of 0.034 min, like the one presented in the 

paper. In the 2D, the benchmark for both pairs is just over 0.015 s, right around the benchmark 

used in the paper of 0.01725 s. 

 

Figure B4 shows the cross-validation performance of the alignment methods for all three 

pairs of chromatograms from different wine samples run in a very short period of time. The 

 

 

 

Figure B3. Cross-validation retention-time RMSE results as a function of training set size for consecutive replicate 

runs of the various wine samples. The names correspond to the vintage year of the wine sample. The top row is for 

chromatograms from vintage year 2011, runs #1 and #2. The middle row is for chromatograms from vintage year 

2012, runs #1 and #2. The bottom row is for chromatograms from vintage year 2013, runs #1 and #2. 
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2011, 2012 pair is discussed in the paper.  In the 1D, the initial misalignments are just barely 

greater than the benchmark RMSE. Because of this, no method is able to improve on the initial 

misalignment in either test. The initial misalignment between pairs in the 2D is around 0.02 s, 

also just above the benchmark value. So, there is little improvement on the alignment from any 

method. These results are in line with those found in the paper.  

Table B1 summarizes the results of all three cross-validation experiments run on the wine 

chromatograms. It shows the minimum testing set RMSE reached for all alignment methods in 

both dimensions along with the average initial misalignment. The cells marked red are RMSE 

values greater than the average initial misalignment for that experiment. 

Figure B5 visualizes the wine alignment results by plotting the minimum RMSE reached 

by each method against the average initial misalignment.  The red dot-dashed line shows the 

RMSE benchmarks. The black dashed line shows the identity function – where the initial 

misalignment and minimum RMSE would be equal. A point above this line indicates that a 

method’s resulting alignment is worse than it initially was, and one below offers an 

improvement. Each alignment method is represented by a different colored point. Between the 

two dimensions, several points from the third-order polynomial and local method slightly worsen 

the initial misalignment (as shown in data points above the dashed line). When the points fall 

under the identity function, it is not by much, showing negligible improvement on the wine 

chromatogram alignment. These data support the idea that if two chromatograms have only a 

small initial misalignment, it may be better not to perform any alignment operation at all. 
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Figure B5. Minimum testing-set RMSE reached by the alignment methods on the wine sample chromatograms 

relative to the average initial misalignment. The red dot-dashed line shows the benchmark RMSE values (0.034 min 

and 0.01725 sec). The black dashed line shows the identity function – where the initial misalignment and minimum 

RMSE would be equal. A point above this line indicates that a method’s resulting alignment is worse than it initially 

was, and one below offers an improvement. 

 

 

 

Figure B4. Cross-validation retention-time RMSE results as a function of training set size for alignment of two 

different wine sample chromatograms. The names correspond to the vintage year of the wine sample. For example, 

the top row is for chromatograms from the second runs of the 2011 and 2013 samples. 
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B.3 Additional Results for Instrument-Varied Data 

Figure B6 shows the results for the alignment of two additional pairs of consecutive 

replicate cocoa sample runs, along with additional training-set figures for the pair presented in 

the paper. The top row aligns replicate sample runs performed on a flow modulation platform, 

and the bottom two rows were performed on a thermal modulation platform. The Thermal 2, 3 

pair is discussed in the paper. For the other pairs in the 1D, the benchmarks are about 0.037 min 

and 0.043 min, respectively. These are consistent with the 0.0412 min benchmark used in the 

paper. For the 2D, the average initial misalignment are about 0.03 s and 0.022 s, respectively, 

right around the paper benchmark of 0.0257 s.  All methods did improve the alignment of the 

replicate flow-modulated chromatograms, indicating that there was a systematic misalignment 

between them. This is due to a small phase-roll affected by the alignment algorithms.  

Figure B7 shows the cross-validation performance of the alignment methods on all six 

pairs of chromatograms acquired on different modulation platforms. The Flow 2, Thermal 1 pair 

is discussed in the paper, but additional training-set plots are presented here. All methods 

significantly improved alignment in both dimensions. In the 1D, the initial misalignments are 

consistently around 23.2 min, well above the benchmark. Across these six experiments, the 

  Minimum RMSE Reached by Alignment Methods in the 1D (min) and 2D (sec) for Wine Chromatograms 

Chromat-

ograms 

None (Avg.) Affine Poly2 Poly3 Gros et al. 
1D 2D 1D 2D 1D 2D 1D 2D 1D 2D 

2011-2012 0.0344 0.0200 0.0289 0.0175 0.0294 0.0167 0.0297 0.0161 0.0362 0.0171 

2011-2013 0.0520 0.0199 0.0427 0.0164 0.0452 0.0166 0.0533 0.0171 0.0406 0.0198 

2012-2013 0.0391 0.0204 0.0352 0.0188 0.0367 0.0195 0.0442 0.0197 0.0405 0.0208 

Average 0.0418 0.0201 0.0356 0.0176 0.0371 0.0176 0.0424 0.0176 0.0391 0.0192 

Table B1. Minimum testing-set RMSE reached by each alignment method in both the first and second 

chromatographic dimensions for all three experiments run with the non-replicate chromatograms from the wine 

samples. The “None” columns are the average initial misalignments, not the minimum. The red boxes indicate 

where the initial misalignment was made worse by a method. On average, no method was able to improve upon the 

initial alignment significantly in either dimension. 
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affine transformation is able to reach about 0.48 min, the local algorithm from Gros et al. is 

about 0.51 min, and the second and third-order polynomials reach about 0.53 min. As observed 

in the paper, the higher-degree polynomials might require more peak-pairs for maximal 

performance. 

In the 2D, the initial misalignment is around 0.5 s. The second-order polynomial reaches a 

minimum RMSE of about 0.031 s on average, the third-order polynomial and local algorithm are 

both around 0.038 s, and the affine transformation averages around 0.046 s. These values are 

consistent with the example presented in the paper.  All are effective, achieving between about 

96% and 99% improvement. 

 

 

 

Figure B6. Cross-validation retention-time RMSE results as a function of training set size for consecutive replicate 

runs of a cocoa sample using different modulation platforms. The top row is for chromatograms from runs #1 and 

#2 using a flow modulator.  The middle row is for chromatograms from runs #1 and #2 using a thermal modulator. 

The bottom row is for chromatograms from runs #2 and #3 using a thermal modulator. 
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Figure B7.  Cross-validation retention-time RMSE results as a function of training set size for chromatograms 

produced from the same cocoa sample but using two different modulation platforms. Each row is a pair of 

chromatograms from two different runs. For example the top row is for chromatograms from run #1 on the flow 

modulator, and run #1 on the thermal modulator. 
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B.4 Maximum Alignment Error 

All figures presented so far have shown the root-mean-square-error (RMSE) with respect 

to retention times of matched peaks in a chromatogram pair. This metric indicates average-case 

performance of an alignment method, but the worst-case scenario must also be considered. 

Figures B8, B9, and B10 show the average maximum absolute alignment error (MAE) across all 

trials run for each training set size.  The standard deviation of this MAE is also shown. Figure B8 

is for the diesel runs, Figure B9 is for the wine runs, and Figure B10 is for the cocoa runs.  

Across all experiments, behavior in both chromatographic dimensions is similar. If the 

training set has enough peak pairs, all methods reach a similar MAE for the testing set. The 

number of peak-pairs required to reach this convergent value differs between the different 

alignment methods. The local method from Gros et al. and the affine transformation require a 

much smaller training set than the second and third-degree polynomials in order to reach a lower 

MAE. This is consistent with the corresponding RMSE behavior. For the diesel runs in the 2D, 

the local algorithm tends to have a higher standard deviation than the other methods, but this 

trend does not hold in the wine and cocoa experiments.  
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A. Runs 012011 and 061413. 

 

 

B. Runs 012011 and 090912. 

 

 

C. Runs 012011 and 100412. 

 

 

Figure S8.  Maximum absolute error as a function of the training set size for diesel sample chromatograms. Sets 

of rows with maximum absolute error on the top of each set and the standard deviation of maximum absolute 

error on the bottom of each set are for:  A. Runs 012011 and 061413, B. Runs 012011 and 090912, and C. Runs 

012011 and 100412. 
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D. Runs 061413 and 090912. 

 

 

E. Runs 061413 and 100412. 

 

 

F. Runs 090912 and 100412. 

 

 

Figure B8 continued. D. Runs 061413 and 090912, E. Runs 061413 and 100412, and F. Runs 090912 and 100412. 
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A. Samples 2011, 2012, Runs #2. 

 

 

B. Samples 2011, 2013, Runs #2. 

 

 

C. Samples 2012, 2013, Runs #2. 

 

 

Figure B9.  Maximum absolute error as a function of the training set size for wine sample Sets of rows with 

maximum absolute error on the top of each set and the standard deviation of maximum absolute error on the 

bottom of each set are for:  A. Samples 2011, 2012, Runs #2, B. Samples 2011, 2012, Runs #2, and C. Samples 

2012, 2013, Runs #2.  
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A. Runs #1 and #1. 

 

 

B. Runs #1 and #2. 

 

 

C. Runs #1 and #3. 

 

 

Figure B10.  Maximum absolute error as a function of the training set size for cocoa sample chromatograms with 

different modulation platforms. Sets of rows with maximum absolute error on the top of each set and the 

standard deviation of maximum absolute error on the bottom of each set are for:  A. Runs #1 and #1, B. Runs #1 

and #2, and C. Runs #1 and #3. 
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D. Runs #2 and #1. 

 

 

E. Runs #2 and #2. 

 

 

F. Runs #2 and #3. 

 

 

Figure B10 continued. D. Runs #2 and #1, E. Runs #2 and #2, and D. Runs #2 and #3. 
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APPENDIX C. SAMPLE CHROMATOGRAMS 

Figures C1 through C4 show examples of the sample chromatograms and peaks used for 

alignment experiments. Figure C1 shows a diesel sample chromatogram acquired on June 14, 

2013. All diesel chromatograms, including the replicate runs, look very similar to this one. The 

yellow circles show the 112 peaks that correspond across all diesel chromatograms and were 

used as alignment points.  

Figure C2 shows a wine sample chromatogram acquired from the second run of the 2011 

vintage sample.  Because misalignment is so minimal between wine chromatograms, they all 

look nearly identical to Figure C2. The yellow circles show the 78 peaks used for alignment of 

the wine chromatograms. 

Figures C3 and C4 show a cocoa sample chromatogram acquired on a system using a 

thermal and flow modulator, respectively. The two other thermal modulated chromatograms used 

in experiments look very similar to C3, and the one other flow modulator chromatogram 

resembles Figure C4. The yellow circles show the 33 peaks used for alignment of cocoa sample 

chromatogram pairs. 
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Figure C1.  Diesel chromatogram 061413. Closed yellow circles represent peaks that were matched across all diesel chromatograms (112 peaks) 

and used as alignment points. 
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Figure C2.  Wine chromatogram MC2011R2. Closed yellow circles represent peaks that were matched across all wine chromatograms (78 peaks) and 

used as alignment points. 
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Figure C3.  Cocoa sample chromatogram Thermal 1. Closed yellow circles represent peaks that were matched across all cocoa chromatograms (33 

peaks) and used as alignment points. 
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Figure C4.  Cocoa sample chromatogram Flow 1. Closed yellow circles represent peaks that were matched across all cocoa chromatograms (33 

peaks) and used as alignment points. 

 


