
LEARNED MOTION MODELS FOR THE PERCEPTION

AND GENERATION OF DYNAMIC HUMANS AND OBJECTS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Davis Rempe

March 2023

© 2023 by Davis Winston Rempe. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This dissertation is online at: https://purl.stanford.edu/kc338bg9787

ii

https://purl.stanford.edu/kc338bg9787

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Leonidas Guibas, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Jeannette Bohg

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Karen Liu

Approved for the Stanford University Committee on Graduate Studies.

Stacey F. Bent, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format.

iii

Abstract

Understanding the motion of humans and objects is key for intelligent systems. Motions are the

result of physics, but non-physical dynamics also play an important role, for example, social norms

and traffic laws determine how pedestrians and vehicles behave. The ability to perceive and generate

these motions enables important applications, such as autonomous robots that operate in the real

world, mixed reality that augments the real world, and animation and simulation that imitate the

real world. Despite often being approached as separate problems, the perception and generation

of motion both fundamentally rely on having an accurate model of dynamics for humans and

objects in a scene. Perception problems like pose estimation, tracking, and shape estimation require

motion understanding to reason about occlusions and noise from partial and ambiguous inputs.

Generation problems such as forecasting future motion rely entirely on being able to predict motion.

A promising avenue to solve these problems is learning models of motion, however, it is challenging

to develop models that accurately reflect the real world, capture the diversity of motion due to

inherent uncertainty, and robustly generalize to many possible scenarios.

This thesis explores how to effectively learn models of motion to solve important perception and

generation problems. We propose several data-driven methods to accurately capture the dynamics of

humans, objects, and how they interact with each other and their environment. In the first part of the

thesis, we introduce two methods for perceiving 3D human pose and 3D object shape, respectively.

The first uses a robust generative model of 3D human pose transitions, while the second learns a

continuous motion representation entirely from point cloud observations. The second part of the

thesis focuses on motion models for synthesizing high-level human behavior in the form of 2D

top-down trajectories. In these works, we introduce two new generative models that handle complex

multi-agent interactions and can be controlled by a user to produce trajectories with desirable

properties. We show this is useful to create rare scenarios for testing autonomous vehicles and

to animate crowds of pedestrians. Finally, the thesis ends with a discussion of important future

directions to continue improving learned models of motion for humans and objects.

iv

Acknowledgments

This thesis would not have been possible without the support, mentorship, and encouragement from

so many people over the last six years. First and foremost, I want to thank Leo Guibas for being an

incredible advisor and mentor throughout my PhD. It has been a long and difficult journey at times,

but was an extremely rewarding experience in Leo’s lab. He is always someone to look up to, both as

a researcher and a person, and has been supportive, patient, and kind the whole way. I appreciate that

he let me work independently and do things in my own way, but still knew when to step in and give

me a nudge in the right direction. As a researcher, he taught me to think deeply about problems, see

the bigger picture, and find connections and interests across a large variety of topics.

Thank you to Prof. Jeannette Bohg and Prof. Karen Liu for being on my reading committee and

for several insightful discussions about projects and ideas over the years. Thank you to Prof. Marco

Pavone for being the chair of my defense committee. I really enjoyed getting to work with Marco and

his team on interesting problems in traffic modeling during my internships at NVIDIA. Also thank

you to Prof. Sanja Fidler for being on my defense committee and for being a great mentor at NVIDIA.

Sanja has a tangible excitement for interesting research problems that is extremely motivating. She

also really helped me to be more collaborative and put together a larger vision for my research.

I want to thank my incredible and inspiring postdoc mentors at Stanford, who were a huge help

especially early in my PhD. Srinath Sridhar was the first person I worked with in Leo’s lab, and he

was such a calming presence and incredibly patient when I knew absolutely nothing working on my

first few projects. He taught me so many research fundamentals, how to communicate ideas clearly,

how to persevere through paper rejections and to believe in my work, and was always available to

chat about research or otherwise. Also thank you to Tolga Birdal for pushing me to think more deeply

and fundamentally about the problems we worked together on. Tolga has a theoretical viewpoint that

always brought a fresh and useful perspective, and his interest in so many types of problems and

knowledge in general was an inspiration for me. Outside of research, it was also fun to play music

together.

v

During my PhD, I had impactful internships thanks to fantastic mentors. Thank you to Jimei

Yang for mentoring me at Adobe, getting me interested in human motion problems, and helping

to push me over the learning curve to have successful projects in these areas. Jimei’s passion for

projects to enable creative applications has been very inspiring for my PhD research and for my

future goals as a researcher. I would also like to thank Or Litany who has been a pleasure to work

with over the last couple years at NVIDIA. Or is always able to offer creative insights on problems

and I have really enjoyed our discussions on such a wide range of topics. He has also been a reliable

source of help for everything from research, to navigating collaborations, to life decisions.

I am very lucky to have collaborated with so many amazing people both through Stanford and

internships. They helped me immensely to grow as a researcher, collaborator, and mentor, and offered

a diversity of perspectives on both research and life that I really appreciate. Thank you especially

to my co-authors (roughly chronological order): He Wang, Julien Valentin, Sofien Bouaziz, Aaron

Hertzmann, Bryan Russell, Ruben Villegas, Yongheng Zhao, Zan Gojcic, Ali Kashefi, Jonah Philion,

Colton Stearns, Jie Li, Rares Ambrus, Sergey Zakharov, Vitor Guizilini, Yanchao Yang, Boxiao Pan,

Will Shen, Despoina Paschalidou, Kaichun Mo, Ziyuan Zhong, Danfei Xu, Yuxiao Chen, Sushant

Veer, Tong Che, Baishakhi Ray, Zhengyi Luo, Jason Peng, Ye Yuan, Kris Kitani, and Karsten Kreis.

Thank you to all of my labmates that have come and gone over the years. They have been a

great source of encouragement, feedback, discussion, and friendship to get my mind off research

every once in a while. Thank you to Prof. Ron Fedkiw and Prof. Doug James for getting my PhD

off to a great start with rotations in their labs. During those rotations, Zhenglin Geng, Jenny Jin,

and Jui-Hsien Wang were extremely helpful to get me oriented with research and life at Stanford.

Thank you to the administrative staff in the CS Department that have been so helpful during my

time at Stanford, especially Carrie Petersen and Jayanthi Subramanian. Also thank you to Steve

Reichenbach back at the University of Nebraska who helped nurture my interest in research during

my undergraduate years.

Finally, thank you to my amazing wife Allie who has given me endless love, support, and patience

throughout my PhD. She has kept me sane through long days and deadlines, and been a constant

reminder to enjoy life outside of research and to go on vacation. Thank you to my mom, dad, brother,

and sister for their encouragement and support. Without the hard work of my parents, I never could

have made it to Stanford in the first place. They have been positive role models all my life, and

enabled me to have the dedication and motivation to pursue a PhD. Thank you to my friends Drew

Dupont, Nam Tran, and Cale Neelly who helped me to have fun and relax even when I could only

see them a few times a year.

vi

Contents

Abstract iv

Acknowledgments v

1 Introduction 1
1.1 Motion Modeling for Perception and Generation 3

1.1.1 Modeling Motion and Accompanying Challenges 3

1.1.2 Perceiving Motion . 5

1.2 Thesis Outline and Contributions . 7

2 3D Human Motion Models for Pose Estimation 11
2.1 Introduction . 11

2.2 Related Work . 13

2.3 HuMoR: 3D Human Dynamics Model . 14

2.3.1 Training . 17

2.4 Test-time Motion Optimization . 18

2.4.1 Optimization Variables . 18

2.4.2 Objective & Optimization . 19

2.5 Experimental Results . 21

2.5.1 Datasets . 21

2.5.2 Baselines and Evaluation Metrics . 22

2.5.3 Generative Model Evaluation . 23

2.5.4 Estimation from 3D Observations . 24

2.5.5 Estimation from RGB(-D) Observations 26

2.6 Discussion . 28

vii

2.7 Additional Related Contributions . 29

2.7.1 Physics-Based Human Motion Modeling 30

3 Modeling 3D Object Motion for Point Cloud Perception 31
3.1 Introduction . 31

3.2 Related Work . 33

3.3 Background . 35

3.4 Method . 36

3.4.1 Network Architecture . 38

3.5 Experimental Evaluations . 40

3.5.1 Evaluations and Applications . 41

3.6 Discussion . 50

3.7 Additional Related Contributions . 51

3.7.1 Spatiotemporal Modeling for 3D Object Tracking 51

3.7.2 Predicting the Future Motion of 3D Objects 52

4 Learned Traffic Model for Scenario Generation 54
4.1 Introduction . 55

4.2 Related Work . 57

4.3 Challenging Scenario Generation . 58

4.3.1 Modeling “Realism”: Learned Traffic Model 60

4.3.2 Adversarial Optimization . 62

4.4 Analyzing and Using Generated Scenarios . 65

4.4.1 Filtering and Collision Classification . 65

4.4.2 Improving the Planner . 66

4.5 Experiments . 67

4.5.1 Scenario Generation Evaluation . 67

4.5.2 Analyzing Generated Scenarios . 70

4.5.3 Improving Rule-Based Planner . 71

4.5.4 Traffic Model Prediction Evaluation . 73

4.6 Discussion . 74

5 Controllable Trajectory Generation 77
5.1 Introduction . 77

viii

5.2 Related Work . 80

5.3 Method . 81

5.3.1 Controllable Trajectory Diffusion . 82

5.3.2 Physics-Based Pedestrian Animation . 86

5.3.3 Controllable Pedestrian Animation System 87

5.4 Experiments . 88

5.4.1 Augmenting Crowd Simulation . 89

5.4.2 Real-world Data Evaluation . 91

5.4.3 Controllable Pedestrian Animation . 93

5.5 Discussion . 94

5.6 Additional Related Contributions . 95

5.6.1 Controllable Traffic Generation . 95

6 Conclusion and Future Vision 97

Bibliography 101

ix

List of Tables

1.1 Summary of thesis contributions . 9

2.1 HuMoR generation results . 23

2.2 Motion and shape estimation from 3D observations 24

2.3 Motion and shape from RGB video on i3DB . 25

2.4 Plausibility evaluation on videos in PROX . 27

3.1 Canonicalization performance. 42

3.2 Partial surface sequence reconstruction results . 43

3.3 Pose estimation using T-NOCS . 45

3.4 Non-rigid reconstruction and correspondences . 46

3.5 Segmentation label propagation performance . 50

4.1 Evaluation of generated challenging scenarios . 69

4.2 Scenario generation for Replay planner . 69

4.3 Improving Rule-Based planner . 72

4.4 Learned traffic model future prediction accuracy 74

4.5 Traffic model ablation study . 74

5.1 Guidance evaluation on ORCA-Maps dataset . 90

5.2 Guidance evaluation on nuScenes . 91

5.3 Closed-loop animation results . 93

5.4 Effect of value function guidance . 94

x

List of Figures

1.1 Problems involving modeling motion . 2

1.2 Thesis overview . 8

2.1 HuMoR method overview . 12

2.2 HuMoR CVAE architecture . 15

2.3 Fitting to partial 3D keypoints results . 23

2.4 Results on fitting to noisy 3D joints . 24

2.5 Comparison fitting to 3D keypoints . 25

2.6 Qualitative comparison fitting to RGB video . 26

2.7 Fitting to RGB-D results . 27

2.8 Fitting example on dynamic dancing data . 28

2.9 Failure cases . 29

2.10 Overview of physics-based human motion from video 30

3.1 CaSPR overview . 32

3.2 Architecture and applications of CaSPR . 37

3.3 Architecture of point-set canonicalization network 39

3.4 Canonicalization applications . 40

3.5 Reconstruction results . 43

3.6 Canonicalization, aggregation, and dense reconstruction results 44

3.7 Continuous interpolation results . 45

3.8 Additional examples of spatiotemporal interpolation 46

3.9 Reconstruction results on Warping Cars data . 47

3.10 Cross-instance correspondences . 48

3.11 Disentanglement examples on warping cars data 48

3.12 Propagating segmentation labels over time and instances 49

xi

3.13 Failure cases of CaSPR . 50

3.14 SpOT sequence refinement results . 51

3.15 Overview of predicting future 3D object motion 52

4.1 STRIVE overview . 56

4.2 Test-time architecture of the learned traffic model 60

4.3 Adversarial optimization step . 63

4.4 Qualitative results on the Rule-based planner . 68

4.5 Qualitative comparison of generated scenarios for the Replay planner 70

4.6 Analysis of generated scenarios . 71

4.7 Proof-of-concept results on pedestrian and cyclist adversaries 75

4.8 STRIVE failure cases . 76

5.1 Pedestrian animation system overview . 78

5.2 Trajectory diffusion model . 83

5.3 Pedestrian animation controller pipeline . 86

5.4 Guidance results on ORCA-Maps . 89

5.5 nuScenes results demonstrating flexibility of TRACE 92

5.6 Animation system capabilities . 93

5.7 Overview of controllable traffic generation method 95

xii

Chapter 1

Introduction

Humans and objects are in constant motion and frequently interact in interesting and complex ways.

Humans move by articulating joints over time based on their intention to perform certain actions.

This motion depends on their physical capabilities, which are determined by body shape and strength.

Objects encapsulate a wider variety of motions. For example, cars move based on accelerations and

steering, which are the result of human behavior and control. Household objects move rigidly (e.g.,

a bottle tipping over) or articulate (e.g., a pair of scissors), while clothing and food may deform in

complicated ways. Finally, interactions determine how humans and objects move together, and how

motion is affected by the surrounding environment. For example, pedestrians move in crowds to

avoid collisions, while vehicles respect the rules of the road including traffic laws and lane markers.

The motion of humans and objects fundamentally follows the laws of physics, which determine

dynamics based on physical forces (gravity, joint torques), properties (mass, friction), and the

environment (collisions). However, at a more abstract or semantic level, motions are the result of

intangible interactions that we consider on a daily basis. Social “forces” determine how pedestrians

interact with each other based on cultural norms, which change if a person is walking alone, with a

colleague, or with a close friend. Traffic laws constrain how we drive, but may be selectively ignored

by more aggressive drivers. Objects have certain semantics and affordances that determine how

humans move during interactions: we usually sit on a couch but lay down on a bed, even though each

object supports both actions.

The work in this thesis is motivated by the fact that intelligent computational systems require

an understanding of both the physical and semantic aspects of motion to operate successfully.

Applications of these systems range from physical systems in the real world to completely digital

ones, and they face several challenges inherent to motion. For example, autonomous systems like

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Motion understanding encapsulates fundamental problems in both perception (left) and
generation (right). In this example for human motion, both sets of problems require knowing how
human pose is likely to change over time, which can be captured by a model of motion. The spiral
trajectory image was taken from [37].

self-driving vehicles and home robots move around the real world based on visual inputs, much

like humans. They need to see moving entities around them from noisy sensors, which may be

partially or even fully occluded. They must anticipate how surrounding entities will move in the

future while accounting for potential uncertainty, and then decide how to proceed to achieve their

goals. Importantly, these systems must deal with a variety of motions from rigid or articulated bodies

to non-rigid deformation.

There are also applications that represent the dynamic world digitally, such as animating charac-

ters or simulating traffic. These systems must synthesize realistic and diverse motion for a variety

of characters and objects. They must also resolve interactions between humans and objects, for

example to simulate motions that avoid collisions and follow social norms. Often, these applications

are inherently creative and therefore require that users have some controllability over motion.

Across these motivating applications, motion understanding encapsulates a wide range of capabil-

ities that includes fundamental tasks in computer vision. These problems are both discriminative (i.e.,

involve perception) and generative (i.e., involve prediction or synthesis). Perception is the ability to

parse the contents of a dynamic scene from visual inputs like an RGB video or point cloud sequence.

For example, estimating the 3D pose of objects and humans, tracking how the pose evolves over time,

and reconstructing their 3D geometry. Prediction, on the other hand, determines how entities are

likely to move in the future, subject to constraints from their environment and interactions with each

other. This kind of forecasting could be for top-down 2D trajectories, full 3D poses, or 3D geometry

(e.g., a point cloud sequence).

The work in this thesis tackles both perception and generation problems, but takes a unified

approach that is built on learned models of motion. We will propose several learning-based methods

that deliberately model the underlying dynamics of humans and objects to accurately capture their

CHAPTER 1. INTRODUCTION 3

motions and how they interact with each other and their surroundings. We will see how these learned

models can be leveraged for perception problems like 3D pose estimation and reconstruction, and

for generative problems such as creating traffic scenarios and simulating crowds. To begin, Sec. 1.1

will define motion modeling, discuss the key challenges, and place the thesis work broadly in the

context of prior approaches (an in depth discussion of related work for specific applications and tasks

is relegated to later chapters). Then, Sec. 1.2 will outline the thesis organization and discuss how the

works are connected by a throughline of effective motion modeling.

1.1 Motion Modeling for Perception and Generation

Perceiving motion and generating motion are often tackled independently using distinct approaches.

As an example, let us consider 3D human motion (i.e., the change in joint pose over time). 3D

human motion can be generated by learning to animate characters [147, 77, 103, 196]. On the

perception side, there are several recent learned approaches to recover 3D human motion from

RGB video [114, 231, 126]. Despite both of these problems relying on the same underlying motion

understanding – knowing how humans are expected to move – animation is achieved with generative

or predictive models, while perception uses discriminative feed-forward networks that, at best, use a

motion prior only during training.

In contrast, the work in this thesis views the the generation and perception of motion as two

sides of the same problem: as shown in Fig. 1.1, both rely on a detailed understanding of motion.

Therefore, modeling the underlying dynamics of humans and objects in a scene should be useful for

solving both sets of problems. This kind of motion model directly solves motion generation problems

where the goal is to synthesize or predict realistic future motions. For perception, the motion model

indicates how a person or object is expected to move, which provides a strong prior on the pose and

geometry that is being estimated. So how should we approach modeling motion in a way that is

useful for both perception and generation? And how do motion models help to tackle perception

challenges compared to other approaches?

1.1.1 Modeling Motion and Accompanying Challenges

At a high level, the goal of a motion model is to predict future states for a human or object based on

past states and the surrounding context, such as the static environment or motion of other dynamic

entities. The state space of the motion and representation of the context varies based on the domain.

Throughout this thesis, we will primarily discuss three different domains: (1) 3D humans, where

CHAPTER 1. INTRODUCTION 4

motion is the change in articulated pose over time, (2) 3D objects represented as point clouds, where

motion is the change in object shape, i.e., evolution of surface points, and (3) vehicle and pedestrian

behavior, where motion is represented using 2D bird’s-eye view trajectories.

Across these domains, there are key features that a motion model must possess to be useful in

downstream applications. Motion models must be:

• Accurate – Motions should reflect real-world data and exhibit both physical and semantic

plausibility. This means predicting motions that respect the laws of physics (accelerations,

contacts, etc.) along with non-physical constraints (e.g., social norms and road rules).

• Diverse – The model should reflect uncertainty by capturing the full distribution of possible

outcomes. This is necessary because motion prediction is usually an under-constrained problem

with many correct answers. For example, the (unobservable) intent of a person has a large

effect on how they move.

• Robust – The model should make reasonable predictions from partial or ambiguous inputs. For

example, 3D sensors provide partial and noisy point cloud observations, from which we want

to recover past motion or predict future motion.

• Generalizable – The model should be accurate for all instances within a class of motions. For

example, a model to predict 3D human poses should work for all body shapes and not just the

average person.

• Interaction-aware – Motion predictions must account for surrounding context. This means

successfully modeling both physical and semantic interactions with the static environment and

with other dynamic entities.

• Controllable – A user should be able to constrain output motions to meet objectives. For

creative applications, this could be hitting specific keyframe poses or traveling to goal loca-

tions. This is also useful for perception, in which case motion must be constrained to match

observations.

One way to model motion is by explicitly leveraging the laws of physics. If we have the full

state of the system being modeled, including the state of the human/object, their surroundings, and

physical properties like mass and friction, we can simulate motion using an explicit physics-based

model to get accurate and realistic dynamics [111, 148, 64, 66, 23, 22]. As discussed in Sec. 2.7.1,

this kind of approach can be successfully used for perception tasks like animating 3D characters

CHAPTER 1. INTRODUCTION 5

from video [208]. It also nicely generalizes to different humans and objects since the underlying

physics does not change. However, using explicit physics relies on knowing information that is not

always given or observable from visual inputs like video. In addition to physical properties like mass

and friction, contacts with the environment must be known or inferred, along with the forces being

exerted by the person which result from high-level intent. Moreover, even though a physics-based

model gives physically-realistic motion, it will not necessarily be semantically plausible. To get

semantics, a high-level controller must determine forces that will, e.g., fulfill the intent of a person or

follow social norms.

This motivates using learned motion models, which have the potential to overcome the issues

of explicit physics while still implicitly capturing physically-plausible motion. Data-driven models

are attractive because, with enough data, they can learn not only physical dynamics, but also motion

resulting from semantic [242, 92] or social interactions (e.g., social distancing in crowds [298, 228, 4,

31]). They can also be formulated probabilistically to handle noise and partiality, capture uncertainty,

and learn semantic plausibility by training with maximum likelihood objectives.

To effectively leverage the capabilities of learned models, there are key technical design chal-

lenges that must be solved, which will be discussed extensively in this thesis. For example:

• The architecture and state space of the model must be carefully designed for each domain

to be accurate and expressive. Unlike physics-based models that have a clearly-defined state

space and dynamics function, neural network motion models can benefit from additional state

information [311] and network structures that reflect inductive bias in a domain [29, 131].

• Generalizing learned motion models to unseen humans and objects at test time requires

carefully-designed architectures and large and diverse training datasets. Even then, ensuring

models maintain accuracy outside of the training domain can be tricky, especially for closed-

loop motion synthesis such as traffic or crowd simulation.

• Incorporating constraints on motion in a flexible way at test time is not straightforward for

black-box neural networks. This is problematic for multi-agent interactions (e.g., collision

avoidance) [163, 164] and user controllability (e.g., keyframe constraints) that inherently

require hard constraints.

1.1.2 Perceiving Motion

Considering the numerous challenges outlined for effectively modeling motion, is it worthwhile to

use motion models for perception problems? After all, there are discriminative approaches to 3D

CHAPTER 1. INTRODUCTION 6

pose estimation, tracking, and reconstruction that do not require developing a fully-featured model

of motion. For example, due to the rapid improvement of deep learning methods that estimate pose

or shape from a single frame of data (e.g., an RGB image or single point cloud) [129, 113, 241], it is

tempting to simply apply these static methods to dynamic data on a per-frame basis to solve perception

tasks. However, this approach cannot guarantee temporal coherence due to inherent uncertainty:

entities are often occluded or disappear completely and, in the case of image observations, 2D

projection introduces ambiguity. Therefore, it is important to consider a wide temporal context to

produce plausible and accurate estimations across a sequence [58].

For neural network methods, a simple approach is to take the entire observation sequence as

input (e.g., RGB video or point cloud sequence) and make an estimation at all frames simultaneously.

The hope is that during training, the model will learn temporal correlations present in the data and

produce plausible outputs. Alternatively, these motion patterns can be explicitly encouraged during

training using loss functions for smoothness [104] or physical plausibility, or using adversarial

training that employs a discriminator to increase the realism of recovered motions [126]. Though at

test time, there is no guarantee that plausibility will be maintained: the black-box network will learn

some implicit model of motion that may be entangled with other factors such as appearance. This

makes generalization to novel inputs potentially challenging, and limits the amount of controllability

available to the user.

Explicitly modeling the underlying motion of observed entities can more effectively inform

perception. Intuitively, if the model understands how humans and objects are expected to move, it

should be easy to determine whether estimated pose, tracks, and shape are plausible. This can be

seen as analysis-by-synthesis, and has several advantages over direct discriminative approaches. For

example, if the motion model captures realistic motion, it can be used to regularize or even directly

parameterize the outputs of the perception model. This will ensure that outputs are constrained

to the valid motion manifold, even at test time, which is particularly useful when observations

are noisy or contain occlusions. In these cases, the motion model can continue to track how

humans/objects are evolving even if they completely disappear from view. Similarly, the motion

model can anticipate future motions to inform perception in later observations. Finally, if the motion

model parameterizes the output of perception, then the motion will be disentangled from distracting

features like appearance.

A simple example of explicitly leveraging a motion model is track-by-detection frameworks [293].

In these methods, object detections at a single step are given as input, and the goal is to associate

detections across time. Several methods explicitly model object states and use a linear dynamics

CHAPTER 1. INTRODUCTION 7

model to estimate future states and thereby inform the association across frames [280]. These simple

dynamics models are a good start but will not be expressive enough for many applications, especially

those dealing with complicated articulation and deformation. More sophisticated motion models

have been employed as optimization priors to recover 3D human and object pose sequences. This

includes both physics-based models [208, 25, 93, 173] along with probabilistic models learned from

data [258, 275]. Using highly expressive neural network models as motion priors is a relatively

recent direction [159], and will be discussed extensively in Chapters 2 and 3. Developing effective

and expressive motion models for perception inherits the challenges outlined in Sec. 1.1.1; robustness

and generalizability are particularly important. This is because input observations may be noisy and

irregular, and if a learned motion prior heavily overfits to a specific motion, it will limit the ability to

perceive more diverse or unexpected motions.

1.2 Thesis Outline and Contributions

This thesis addresses several problems in motion perception and generation. In particular, we focus

on developing data-driven models of motion and providing insights into the most effective ways to

achieve the capabilities outlined in Sec. 1.1.1. By learning motion models for 3D human pose, 3D

object shape, and 2D vehicle and pedestrian trajectories, several generative applications are enabled

such as character animation, traffic and crowd simulation, and traffic scenario editing. Moreover,

the proposed methods promote the analysis-by-synthesis perception paradigm by using learned

models of motion to inform perception tasks like 3D pose estimation and shape reconstruction. The

contributions of the thesis to the area of learned motion modeling are summarized in Tab. 1.1.

The thesis is organized into two main parts, as shown in Fig. 1.2. Chapters 2 and 3 focus

on motion models for perception problems. Specifically, they tackle perceiving the pose of 3D

humans and shape of 3D objects that are relatively isolated (i.e., have few environment or multi-agent

interactions). Chapters 4 and 5 look at generative applications of motion modeling centered around

human behavior. In these works, motion takes the form of 2D vehicle and pedestrian trajectories that

contain considerable interactions between agents and with the environment.

Chapter 2 introduces the HuMoR model for 3D human motion [206]. HuMoR is an expressive

generative model in the form of a conditional variational autoencoder (VAE), which learns a distribu-

tion of the change in pose at each step of a motion sequence. As a latent variable model, HuMoR

accounts for the uncertainty inherent to human motion and captures a diverse set of possible futures.

Its architecture design mirrors that of a traditional physics-based model, enabling generalization to a

CHAPTER 1. INTRODUCTION 8

Figure 1.2: This thesis introduces several learned models of motion for solving important problems
in perception and generation. The first two chapters focus on perceiving 3D humans and objects,
while the latter two model vehicle and pedestrian behavior for traffic and crowd simulation using 2D
trajectories.

variety of motions and body shapes after training on a large motion capture dataset. For perception,

HuMoR is used as a motion prior to robustly estimate plausible 3D human pose, shape, and ground

contacts from noisy and ambiguous observations like RGB videos and point clouds. This is achieved

through a flexible optimization approach that controls motion using the HuMoR latent space to best

fit the partial observations.

Humans can be treated as articulated rigid bodies for the sake of pose estimation, so HuMoR

predicts human motion in the intuitive and low-dimensional pose space. However, general 3D objects

may experience motion that is rigid, articulated, and even deformable. How can motion be effectively

modeled for such 3D objects with no obvious state space?

Chapter 3 introduces CaSPR [207], a method to learn representations for dynamic 3D point

clouds that more generally capture spatiotemporal changes in object shape. The goal of such

a representation is to enable information aggregation over time and the interrogation of object

state at any spatiotemporal neighborhood in the past, observed or not. CaSPR first maps an input

point cloud sequence to a spatiotemporally-canonicalized object space. This canonicalization is

leveraged by a continuous model of object motion built on the latent neural ordinary differential

equations (ODE) framework. Using a latent ODE for motion enables learning a state space best

suited for a particular object motion, and therefore is flexible to rigid and deformable objects alike.

Experiments demonstrate the effectiveness of CaSPR on several perception applications including

CHAPTER 1. INTRODUCTION 9

Method Accurate & Diverse Robust & General Interactions Controllable

HuMoR • Conditional VAE • Single-step design • Ground contacts • Latent optim
(Chapter 2) • Human pose state • Latent variable model

CaSPR • Neural ODE • Canonicalization – –
(Chapter 3) • Latent state space

STRIVE • Conditional VAE • Bicycle model output • Graph structure • Latent optim
(Chapter 4) • Collision penalty

TRACE • Diffusion model • Agent-centric • Map feature grid • Guidance
(Chapter 5) • Classifier-free sampling

Table 1.1: Summary of the thesis contributions to the area of learned motion modeling. Several of
the challenges outlined in Sec. 1.1.1 are addressed within each of the presented works.

shape reconstruction, camera pose estimation, continuous spatiotemporal sequence reconstruction,

and correspondence estimation from irregularly or intermittently sampled point cloud observations.

In Chapters 4 and 5, learned models are used to simulate high-level human behavior, which

is rich with multi-agent interactions. In these works, motion is represented as 2D trajectories – a

temporal series of 2D waypoints that a human will either drive or walk through. Modeling motion as

trajectories is useful for autonomous vehicles, where populating a simulation with realistic drivers

and pedestrians helps to test and train self-driving systems.

Chapter 4 tackles the problem of scalably creating long-tail (i.e., rare) traffic scenarios [210],

which are crucial to ensuring autonomous planners are safe. We introduce a method called STRIVE

to automatically generate challenging scenarios that cause a given planner to produce undesirable

collision behaviors. To maintain scenario plausibility, STRIVE leverages a learned model of traffic

motion in the form of a graph-based conditional VAE. The VAE operates at the scene level, using

a graph structure to resolve interactions between vehicles and training with a collision penalty to

encourage realistic interactions. The output of the model is an action sequence, which goes through

the kinematic bicycle model to ensure realistic vehicle dynamics are predicted. Similar to HuMoR,

the VAE learns a latent space that can be exploited via optimization to control the future trajectories of

vehicles in a scenario. Scenario generation is formulated as a latent space optimization that perturbs

an initial real-world scene to produce trajectories that collide with a given planner. A subsequent

optimization is used to find a “solution” to the scenario, ensuring it is useful to improve the planner.

Experiments show that STRIVE successfully generates a diverse set of realistic and challenging

scenarios to attack, and thereby improve, two planners.

STRIVE and HuMoR demonstrate the ability to control the outputs of a VAE motion model

CHAPTER 1. INTRODUCTION 10

by optimizing in the latent space. However, this latent traversal can be expensive and produces

deterministic results, even if there are several plausible ways to meet the desired objectives. Chapter 5

explores an alternative approach to controlling motion generation through diffusion modeling [209].

We introduce a method called TRACE for generating realistic pedestrian trajectories that can be

controlled to meet user-defined goals. TRACE is a guided diffusion model that allows users to

constrain trajectories through target waypoints, speed, collision avoidance, and specified social

groups while accounting for the surrounding environment context. The denoising architecture

employs a learned map feature grid to resolve local interactions between pedestrians and obstacles,

and classifier-free training is used to ensure the model is flexible to guidance. Guidance perturbs

generated trajectories as part of the denoising process at test time, such that the model does not need

to be re-trained to work with new user controls. TRACE is integrated with a physics-based humanoid

controller to form a closed-loop, full-body pedestrian animation system capable of placing large

crowds in a simulated environment with varying terrains.

Chapter 6 concludes the thesis by summarizing the main contributions and connecting them to

several future directions to continue improving learned motion models for perception and generation.

Chapter 2

3D Human Motion Models for Pose
Estimation

We begin by tackling one of the most fundamental perception problems involving humans: 3D pose

estimation. As introduced next, the key component is a learned model of 3D human pose transitions

called HuMoR, which was originally published in ICCV 2021 [206].

2.1 Introduction

As humans, we are constantly moving in, interacting with, and manipulating the world around

us. Thus, applications such as action recognition [265, 266] or holistic dynamic indoor scene

understanding [39] require accurate perception of 3D human pose, shape, motion, contacts, and

interaction. Extensive previous work has focused on estimating 2D or 3D human pose [27, 167, 168],

shape [187, 88, 226], and motion [126] from videos. These are challenging problems due to the

large space of articulations, body shape, and appearance variations. Even the best methods struggle

to accurately capture a wide variety of motions from varying input modalities, producing noisy or

overly-smoothed motions (especially at ground contact, i.e., footskate), and struggle with occlusions

(e.g., walking behind a couch as in Fig. 2.1).

In this chapter, we focus on the problem of building a robust human motion model that can

address these challenges. To date, most motion models directly represent sequences of likely poses

— e.g., in PCA space [181, 259, 235] or via future-predicting autoregressive processes [250, 258,

191]. However, purely pose-based predictions either make modeling environment interactions and

generalization beyond training poses difficult, or quickly diverge from the space of realistic motions.

11

CHAPTER 2. 3D HUMAN MOTION MODELS FOR POSE ESTIMATION 12

Figure 2.1: HuMoR is a 3D Human Motion model for Robust estimation of temporal pose formulated
as a conditional variational autoencoder. (Left) The proposed approach can operate on many input
modalities and is designed to handle partial and noisy observations. (Middle/Right) A test-time
optimization fits 3D motion and shape to an input sequence using HuMoR as a prior; additional
outputs include the ground and person-ground contacts (colored as ground plane and contacts).

On the other hand, explicit physical dynamics models [208, 145, 233, 195, 25, 24] are resource

intensive and require knowledge of unobservable physical quantities. While generative models

potentially offer the required flexibility, building an expressive, generalizable and robust model for

realistic 3D human motions remains an open problem.

To address this, we introduce a learned, autoregressive, generative model that captures the

dynamics of 3D human motion, i.e., how pose changes over time. Rather than describing likely

poses, the Human Motion Model for Robust Estimation (HuMoR) models a probability distribution

of possible pose transitions, formulated as a conditional variational autoencoder [239]. Though

not explicitly physics-based, its components correspond to a physical model: the latent space

can be interpreted as generalized forces, which are inputs to a dynamics model with numerical

integration (the decoder). Moreover, ground contacts are explicitly predicted and used to constrain

pose estimation at test time.

After training on the large AMASS motion capture dataset [162], we use HuMoR as a motion

prior at test time for 3D human perception from noisy and partial observations across different input

modalities such as RGB(-D) video and 2D or 3D joint sequences, as illustrated in Fig. 2.1 (left).

In particular, we introduce a robust test-time optimization strategy which interacts with HuMoR to

estimate the parameters of 3D motion, body shape, the ground plane, and contact points as shown

in Fig. 2.1 (middle/right). This interaction happens in two ways: (i) by parameterizing the motion

in the latent space of HuMoR, and (ii) using HuMoR priors in order to regularize the optimization

towards the space of plausible motions.

Comprehensive evaluations reveal that our method surpasses the state-of-the-art on a variety

of visual inputs in terms of accuracy and physical plausibility of motions under partial and severe

CHAPTER 2. 3D HUMAN MOTION MODELS FOR POSE ESTIMATION 13

occlusions. We further demonstrate that our motion model generalizes to diverse motions and

body shapes on common generative tasks like sampling and future prediction. In a nutshell, our

contributions are:

• HuMoR, a generative 3D human motion prior modeled by a novel conditional VAE which

enables expressive and general motion reconstruction and generation,

• A subsequent robust test-time optimization approach that uses HuMoR as a strong motion

prior jointly solving for pose, body shape, and ground plane / contacts,

• The capability to operate on a variety of inputs, such as RGB(-D) video and 2D/3D joint

position sequences, to yield accurate and plausible motions and contacts, exemplified through

extensive evaluations.

Our work, more generally, suggests that neural nets for dynamics problems can benefit from

architectures that model transitions, allowing control structures that emulate classical physical

formulations.

2.2 Related Work

Much progress has been made on building methods to recover 3D joint locations [190, 168, 167] or

parameterized 3D pose and shape (i.e., SMPL [155]) from observations [263]. We focus primarily

on motion and shape estimation.

Learning-Based Estimation. Deep learning approaches have shown success in regressing 3D shape

and pose from a single image [129, 113, 188, 84, 83, 300, 41]. This has led to developments in

predicting motion (pose sequences) and shape directly from RGB video [114, 305, 231, 247, 58].

Most recently, VIBE [126] uses adversarial training to encourage plausible outputs from a conditional

recurrent motion generator. MEVA [159] maps a fixed-length image sequence to the latent space of

a pre-trained motion autoencoder. These methods are fast and produce accurate root-relative joint

positions for video, but motion is globally inconsistent and they struggle to generalize, e.g., under

severe occlusions. Other works have addressed occlusions but only on static images [17, 309, 217,

75, 127]. Our approach resolves difficult occlusions in video and other modalities by producing

plausible and expressive motions with HuMoR.

Optimization-Based Estimation. One may directly optimize to more accurately fit to observations

(images or 2D pose estimators [27]) using human body models [71, 8, 19]. SMPLify [19] uses the

CHAPTER 2. 3D HUMAN MOTION MODELS FOR POSE ESTIMATION 14

SMPL model [155] to fit pose and shape parameters to 2D keypoints in an image using priors on pose

and shape. Later works consider body silhouettes [134] and use a learned variational pose prior [187].

Optimization for motion sequences has been explored by several works [6, 108, 151, 301, 283] which

apply simple smoothness priors over time. These produce reasonable estimates when the person is

fully visible, but with unrealistic dynamics, e.g., overly smooth motions and footskate.

Some works employ human-environment interaction and contact constraints to improve shape

and pose estimation [93, 151, 94] by assuming scene geometry is given. iMapper [172] recovers

both 3D joints and a primitive scene representation from RGB video based on interactions by motion

retrieval, which may differ from observations. In contrast, our approach optimizes for pose and shape

by using an expressive generative model that produces more natural motions than prior work with

realistic ground contact.

Human Motion Models. Early sophisticated motion models for pose tracking used a variety of

approaches, including mixtures-of-Gaussians [106], linear embeddings of periodic motion [181,

259, 235], nonlinear embeddings [62], and nonlinear autoregressive models [250, 274, 258, 191].

These methods operate in pose space, and are limited to specific motions. Models based on physics

can potentially generalize more accurately [208, 145, 233, 195, 25, 24, 297], while also estimating

global pose and environmental interactions. However, general-purpose physics-based models are

difficult to learn, computationally intensive at test-time, and often assume full-body visibility to

detect contacts [208, 145, 233].

Many motion models have been learned for computer animation [21, 132, 219, 142, 148, 103,

242] including recent recurrent and autoregressive models [89, 77, 98, 285, 147]. These often

focus on visual fidelity for a small set of characters and periodic locomotions. Some have explored

generating more general motion and body shapes [311, 189, 3, 46], but in the context of short-

term future prediction. HuMoR is most similar to Motion VAE [147], however we make crucial

contributions to enable generalization to unseen, non-periodic motions on novel body shapes.

2.3 HuMoR: 3D Human Dynamics Model

The goal of this work is to build an expressive and generalizable generative model of 3D human

motion learned from real human motions, and to show that this can be used for robust test-time

optimization (TestOpt) of pose and shape. In this section, we first describe the model, HuMoR.

State Representation. We represent the state of a moving person as a matrix x composed of a root

translation r ∈ R3, root orientation Φ ∈ R3 in axis-angle form, body pose joint angles Θ ∈ R3×21

CHAPTER 2. 3D HUMAN MOTION MODELS FOR POSE ESTIMATION 15

Figure 2.2: The HuMoR CVAE architecture is shown. During training, given the previous state
xt−1 and ground truth current state xt, the model reconstructs x̂t by sampling from the encoder
distribution. At test time we can (i) generate the next state from xt−1 by sampling from the prior
distribution and decoding, (ii) infer a latent transition zt with the encoder, or (iii) evaluate the
likelihood of a given zt with the conditional prior.

and joint positions J ∈ R3×22:

x = [r ṙ Φ Φ̇ Θ J J̇], (2.1)

where ṙ, Φ̇ and J̇ denote the root and joint velocities, respectively, giving x ∈ R3×69. Part of the

state, (r,Φ,Θ), parameterizes the SMPL body model [155, 218] which is a differentiable function

M(r,Φ,Θ, β) that maps to body mesh vertices V ∈ R3×6890 and joints JSMPL ∈ R3×22 given

shape parameters β ∈ R16. Our over-parameterization allows for two ways to recover the joints: (i)

explicitly from J, (ii) implicitly through the SMPL map M(·).

Latent Variable Dynamics Model. We are interested in modeling the probability of a time sequence

of states

pθ(x0,x1, . . . ,xT) = pθ(x0)
T∏
t=1

pθ(xt|xt−1) , (2.2)

where each state is assumed to be dependent on only the previous one and θ are learned parameters.

Then pθ(xt|xt−1) must capture the plausibility of a transition.

We propose a conditional variational autoencoder (CVAE) which formulates the motion

pθ(xt|xt−1) as a latent variable model as shown in Fig. 2.2. Following the original CVAE deriva-

tion [239], our model contains two main components. First, conditioned on the previous state xt−1,

CHAPTER 2. 3D HUMAN MOTION MODELS FOR POSE ESTIMATION 16

the distribution over possible latent variables zt ∈ R48 is described by a learned conditional prior:

pθ(zt|xt−1) = N (zt;µθ(xt−1), σθ(xt−1)) , (2.3)

which parameterizes a Gaussian distribution with diagonal covariance via a neural network. In-

tuitively, the latent variable zt represents the transition to xt and should therefore have different

distributions given different xt−1. For example, an idle person has a large variation of possible next

states while a person in midair is on a nearly deterministic trajectory. Learning the conditional prior,

rather than assuming pθ(zt|xt−1) = N (zt;0, I), significantly improves the ability of the CVAE to

generalize to diverse motions and empirically stabilizes both training and TestOpt.

Second, conditioned on zt and xt−1, the decoder produces two outputs, ∆θ and ct. The change

in state ∆θ defines the output distribution pθ(xt|zt,xt−1) through

xt = xt−1 +∆θ(zt,xt−1) + η, η ∼ N (0, I). (2.4)

We find the additive update ∆θ improves predictive accuracy compared to direct next-step prediction.

The person-ground contact ct is the probability that each of 8 body joints (left and right toes, heels,

knees, and hands) is in contact with the ground at time t. Contacts are not part of the input to the

conditional prior, only an output of the decoder. The contacts enable environmental constraints in

TestOpt.

The complete probability model for a transition is then:

pθ(xt|xt−1) =

∫
zt

pθ(zt|xt−1)pθ(xt|zt,xt−1). (2.5)

Given an initial state x0, one can sample a motion sequence by alternating between sampling

zt ∼ pθ(zt|xt−1) and sampling xt ∼ pθ(xt|zt,xt−1), from t = 1 to T . This model parallels a

conventional stochastic physical model. The conditional prior can be seen as a controller, producing

“forces” zt as a function of state xt−1, while the decoder acts like a combined physical dynamics

model and Euler integrator of generalized position and velocity in Eq. (2.4).

In addition to this nice physical interpretation, our model is motivated by Motion VAE (MVAE) [147],

which has recently shown promising results for single-character locomotion animation, also using a

VAE for pθ(xt|xt−1). However, we find that directly applying MVAE for estimation does not give

good results (Sec. 2.5). We overcome this by additionally learning a conditional prior, modeling

the change in state and contacts, and encouraging consistency between joint position and angle

CHAPTER 2. 3D HUMAN MOTION MODELS FOR POSE ESTIMATION 17

predictions (Sec. 2.3.1).

Rollout. We use our model to define a deterministic rollout function, which is key to TestOpt. Given

an initial state x0 and a sequence of latent transitions z1:T , we define a function xT = f(x0, z1:T)

that deterministically maps the motion “parameters” (x0, z1:T) to the resulting state at time T . This

is done through autoregressive rollout which decodes and integrates xt = xt−1 +∆θ(zt,xt−1) at

each timestep.

Initial State GMM. We model pθ(x0) with a Gaussian mixture model (GMM) containing K = 12

components with weights γi, so that pθ(x0) =
∑K

i=1 γ
iN (x0;µ

i
θ, σ

i
θ).

2.3.1 Training

Our CVAE is trained using pairs of (xt−1, xt). We consider the usual variational lower bound:

log pθ(xt|xt−1) ≥ Eqϕ [log pθ(xt|zt,xt−1)]−DKL(qϕ(zt|xt,xt−1) ∥ pθ(zt|xt−1)). (2.6)

The expectation term measures the reconstruction error of the decoder. The encoder, i.e. approximate

posterior, is introduced for training and parameterizes a Gaussian distribution qϕ(zt|xt,xt−1) =

N (zt;µϕ(xt,xt−1), σϕ(xt,xt−1)). The KL divergence DKL(· ∥ ·) regularizes its output to be near

the prior. Therefore, we seek the parameters (θ, ϕ) that minimize the loss function

Lrec + wKLLKL + Lreg (2.7)

over all training pairs in our dataset, where Lrec + wKLLKL is the lower bound in Eq. (2.6) with

weight wKL, and Lreg contains additional regularizers.

For a single training pair (xt−1, xt), the reconstruction loss is computed as Lrec = ||xt − x̂t||2

from the decoder output x̂t = xt−1 + ∆θ(zt,xt−1) with zt ∼ qϕ(zt|xt,xt−1). Gradients are

backpropagated through this sample using the reparameterization trick [122]. The regularization

loss contains two terms: Lreg = LSMPL + wcontactLcontact. The SMPL term LSMPL = Ljoint + Lvtx +

Lconsist uses the output of the body model with the estimated parameters and ground truth shape

[ĴSMPL
t , V̂t] = M(r̂t, Φ̂t, Θ̂t, β):

Ljoint = ||JSMPL
t − ĴSMPL

t ||2 (2.8)

Lvtx = ||Vt − V̂t||2 (2.9)

Lconsist = ||Ĵt − ĴSMPL
t ||2. (2.10)

CHAPTER 2. 3D HUMAN MOTION MODELS FOR POSE ESTIMATION 18

The loss Lconsist encourages consistency between regressed joints and those of the body model.

The contact loss Lcontact = LBCE + Lvel contains two terms. The first supervises ground contact

classification with a typical binary cross entropy; the second regularizes joint velocities to be

consistent with contacts Lvel =
∑

j ĉ
j
t ||v̂t||2 with v̂t ∈ ˆ̇Jt and ĉjt ∈ ĉt the predicted probability that

joint j is in ground contact. We set wcontact = 0.01 and wKL = 4e−4.

The initial state GMM is trained separately with expectation-maximization on the same dataset

used to train the CVAE.

Implementation Details. To ease learning and improve generalization, our model operates in an

aligned canonical coordinate frame at each step. Specifically, based on xt−1 we apply a rotation

around the up (+z) axis and translation in x, y such that the x and y components of rt−1 are 0

and the person’s body right axis (w.r.t. Φt−1) is facing the +x direction. All networks are 4 or 5

layer MLPs with ReLU activations and group normalization [282]. The latent transition zt ∈ R48 is

skip-connected to every layer of the decoder in order to emphasize its importance and help avoid

posterior collapse [147].

A common difficulty in training VAEs is posterior collapse [158] – when the learned latent

encoding zt is effectively ignored by the decoder. This problem is exacerbated in CVAEs since the

decoder receives additional conditioning [147, 239]. To combat posterior collapse [158, 147, 239],

we linearly anneal wKL during training [20]. Following [147], we also use scheduled sampling [12]

to enable long-term generation by making the model robust to its own errors.

2.4 Test-time Motion Optimization

We next use the space of motion learned by HuMoR as a prior in TestOpt to recover pose and shape

from noisy and partial observations while ensuring plausibility.

2.4.1 Optimization Variables

Given a sequence of observations y0:T , either as 2D/3D joints, 3D point clouds, or 3D keypoints,

we seek the shape β and a sequence of SMPL pose parameters (r0:T ,Φ0:T ,Θ0:T) which describe

the underlying motion being observed. We parameterize the optimized motion using our CVAE
by the initial state x0 and a sequence of latent transitions z1:T . Then at T (and any intermediate

steps) xT = f(x0, z1:T) is determined through model rollout using the decoder as previously

detailed. Compared to directly optimizing SMPL [6, 19, 108], this motion representation naturally

encourages plausibility and is compact in the number of variables. To obtain the transformation

CHAPTER 2. 3D HUMAN MOTION MODELS FOR POSE ESTIMATION 19

between the canonical coordinate frame in which our CVAE is trained and the observation frame

used for optimization, we additionally optimize the ground plane of the scene g ∈ R3 with g = dn̂

where n̂ is the ground unit normal vector and d the plane offset. All together, we simultaneously

optimize initial state x0, a sequence of latent variables z1:T , ground g, and shape β. We assume a

static camera with known intrinsics.

Observation-to-Canonical Transformation. We assume that gravity is orthogonal to the ground

plane. Therefore, given the current floor g and root state r,Φ (in the observation frame) we compute

a rotation and translation to the canonical CVAE frame: after the transformation, n̂ is aligned with

+z and d = 0, Φ faces body right towards +x, and the x, y components of r are 0. With this ability,

we can always compute the (observed) state at time xt from z1:t, x0, and g by (i) transforming x0 to

the canonical frame, (ii) using the CVAE to rollout xt = f(x0, z1:t), and (iii) transforming xt back

to the observation frame.

2.4.2 Objective & Optimization

The optimization objective can be formulated as a maximum a-posteriori (MAP) estimate, which

seeks a motion that is plausible under our generative model while closely matching observations:

min
x0,z1:T ,g,β

Emot + Edata + Ereg. (2.11)

We next detail each of these terms which are the motion prior, data, and regularization energies. In

the following, λ are weights to determine the contribution of each term.

Motion Prior Emot. This energy measures the likelihood of the latent transitions z1:T and initial

state x0 under the HuMoR CVAE and GMM. It is Emot = ECVAE + Einit where

ECVAE = −λCVAE

T∑
t=1

logN (zt;µθ(xt−1), σθ(xt−1)) (2.12)

Einit = −λinit log
K∑
i=1

γiN (x0;µ
i
θ, σ

i
θ). (2.13)

ECVAE uses the learned conditional prior and Einit uses the initial state GMM.

Data Term Edata. This term is the only modality-dependent component of our approach, requiring

different losses for different inputs: 3D joints, 2D joints, and 3D point clouds. All data losses operate

on SMPL joints or mesh vertices obtained through the body model [JSMPL
t ,Vt] = M(rt,Φt,Θt, β)

CHAPTER 2. 3D HUMAN MOTION MODELS FOR POSE ESTIMATION 20

using the current shape β along with the SMPL parameters (rt,Φt,Θt) contained in xt = f(x0, z1:t)

transformed from the canonical to observation (i.e. camera) frame. In the simplest case, the

observations yt are 3D joint positions (or keypoints with known correspondences) and our energy is

Edata ≜ E3D
data = λdata

T∑
t=0

J∑
j=1

||pj
t − yj

t ||2 (2.14)

with pj
t ∈ JSMPL

t . For 2D joint positions, each with a detection confidence σj
t , we use a re-projection

loss

Edata ≜ E2D
data = λdata

T∑
t=0

J∑
j=1

σj
t ρ(Π(p

j
t)− yj

t) (2.15)

with ρ the robust Geman-McClure function [19, 73] and Π the pinhole projection. If an estimated

person segmentation mask is available, it is used to ignore spurious 2D joints. Finally, if yt is a 3D

point cloud obtained from a depth map roughly masked around the person of interest, we use the

mesh vertices to compute

Edata ≜ EPC3D
data = λdata

T∑
t=0

Nt∑
i=1

wbs min
pt∈Vt

||pt − yi
t||2 (2.16)

where wbs is a robust bisquare weight [10] computed based on the Chamfer distance term.

Regularizers Ereg. The additional regularization consists of four terms Ereg = Eskel + Eenv + Egnd +

Eshape. The first two terms encourage rolled-out motions from the CVAE to be plausible even when

the initial state x0 is far from the optimum (i.e. early in optimization). The skeleton consistency term

uses the joints Jt directly predicted by the decoder during rollout along with the SMPL joints:

Eskel =

T∑
t=1

(
λc

J∑
j=1

||pj
t − p

j,pred
t ||2 + λb

B∑
i=1

(lit − lit−1)
2
)

(2.17)

with pj
t ∈ JSMPL

t and p
j,pred
t ∈ Jt. The second summation uses bone lengths l computed from Jt at

each step. The second regularizer Eenv ensures consistency between predicted CVAE contacts, the

motion, and the environment:

Eenv =
T∑
t=1

J∑
j=1

λcvc
j
t ||p

j
t − pj

t−1||
2 + λchc

j
t max(|pj

z,t| − δ, 0) (2.18)

CHAPTER 2. 3D HUMAN MOTION MODELS FOR POSE ESTIMATION 21

where pj
t ∈ JSMPL

t and cjt is the contact probability output from the model for joint j. The contact

height term weighted by λch ensures the z-component of contacting joints are within δ of the floor in

the canonical frame.

The final two regularizers are priors on the ground and shape. We assume the ground should stay

close to initialization Egnd = λgnd||g − ginit||2. Finally, β should stay near the neutral zero vector

similar to [93, 187]: Eshape = λshape||β||2.

Initialization & Optimization. We initialize the temporal SMPL parameters r0:T ,Φ0:T ,Θ0:T

and shape β with an initialization optimization using Edata and Eshape along with two additional

regularization terms. Epose =
∑

t ||z
pose
t ||2 is a pose prior where z

pose
t ∈ R32 is the body joint angles

represented in the latent space of the VPoser model [187, 93]. The smoothness term Esmooth =∑T
t=1

∑J
j=1 ||p

j
t − pj

t−1||2 with pj
t ∈ JSMPL

t smooths 3D joint positions over time. Afterwards, the

initial latent sequence zinit
1:T is computed through inference with the CVAE encoder. Our optimization

is implemented in PyTorch [186] using L-BFGS and autograd; with batching, a 3s RGB video

takes about 5.5 min to fit. For all experiments, we optimize using the neutral SMPL+H [218] body

model in 3 stages. First, only the initial state x0 and first 15 frames of the latent sequence z1:15

are optimized for 30 iterations in order to quickly reach a reasonable initial state. Next, x0 is fixed

while the full latent dynamics sequence z1:T is optimized for 25 iterations, and then finally the full

sequence and initial state are tuned together for another 15 iterations. The ground g and shape β are

optimized in every stage.

2.5 Experimental Results

We evaluate HuMoR on (i) generative sampling tasks and (ii) as a prior in TestOpt to estimate motion

from 3D and RGB(-D) inputs. We encourage viewing the supplementary videos to appreciate the

qualitative improvement of our approach.

2.5.1 Datasets

AMASS [162] is a large motion capture database containing diverse motions and body shapes on the

SMPL body model. We sub-sample the dataset to 30 Hz and use the recommended training split

to train the CVAE and initial state GMM in HuMoR. We evaluate on the held out Transitions and

HumanEva [236] subsets (Sec. 2.5.3 and 2.5.4).

https://geometry.stanford.edu/projects/humor/supp.html

CHAPTER 2. 3D HUMAN MOTION MODELS FOR POSE ESTIMATION 22

i3DB [172] contains RGB videos of person-scene interactions involving medium to heavy occlusions.

It provides annotated 3D joint positions and a primitive 3D scene reconstruction which we use to

fit a ground plane for computing plausibility metrics. We run off-the-shelf 2D pose estimation [27],

person segmentation [36], and plane detection [149] models to obtain inputs for our optimization.

PROX [93] contains RGB-D videos of people interacting with indoor environments. We use a subset

of the qualitative data to evaluate plausibility metrics using a floor plane fit to the provided ground

truth scene mesh. We obtain 2D pose, person masks, and ground plane initialization in the same way

as done for i3DB. We evaluate on all videos from 4 chosen scenes (N3Office, N3Library, N0Sofa,

and MPH1Library) that tend to have more dynamic motions and occlusions.

2.5.2 Baselines and Evaluation Metrics

Motion Prior Baselines. We ablate the proposed CVAE to analyze its core components: No Delta

directly predicts the next state from the decoder rather than the change in state, No Contacts does

not classify ground contacts, No LSMPL does not use SMPL regularization in training, and Standard

Prior uses N (0, I) rather than our learned conditional prior. All of these ablated together recovers

MVAE [147].

Motion Estimation Baselines. VPoser-t is the initialization phase of our optimization. It uses

VPoser [187] and 3D joint smoothing similar to previous works [6, 108, 301]. PROX-(RGB/D) [93]

are optimization-based methods which operate on individual frames of RGB and RGB-D videos,

respectively. Both assume the full scene mesh is given to enforce contact and penetration constraints.

VIBE [126] is a recent learned method to recover shape and pose from video.

Error Metrics. 3D positional errors are measured on joints, keypoints, or mesh vertices (Vtx) and

compute global mean per-point position error unless otherwise specified. We report positional errors

for all (All), occluded (Occ), and visible (Vis) observations separately. Finally, we report binary

classification accuracy of the 8 person-ground contacts (Contact) predicted by HuMoR.

Plausibility Metrics. We use additional metrics to measure qualitative motion characteristics that

joint errors cannot capture. Smoothness is evaluated by mean per-joint accelerations (Accel) [114].

Another important indicator of plausibility is ground penetration [208]. We use the true ground

plane to compute the frequency (Freq) of foot-floor penetrations: the fraction of frames for both

the left and right toe joints that penetrate more than a threshold. We measure frequency at 0, 3, 6,

9, 12, and 15 cm thresholds and report the mean. We also report mean penetration distance (Dist),
where non-penetrating frames contribute a distance of 0 to make values comparable across differing

CHAPTER 2. 3D HUMAN MOTION MODELS FOR POSE ESTIMATION 23

Future Prediction Diversity
Model Contact ↑ ADE ↓ FDE ↓ APD ↑
MVAE [147] - 25.8 50.6 85.4
HuMoR 0.88 21.5 42.1 94.9
HuMoR (Qual) 0.88 22.0 46.3 100.0

Table 2.1: (Left) Future prediction accuracy for 2s AMASS sequences. Contact classification
accuracy, average displacement error (cm), and final displacement error (cm) are reported. (Right)
Sampling diversity over 5s rollouts measured by average pairwise distance (cm).

Figure 2.3: Fitting to partial 3D keypoints. HuMoR captures non-periodic motions like jumping,
crouching, and kicking.

frequencies.

2.5.3 Generative Model Evaluation

We first evaluate HuMoR as a standalone generative model and show improved generalization

to unseen motions and bodies compared to MVAE for two common tasks (see Table 2.1): future

prediction and diverse sampling. We use 2s AMASS sequences and start generation from the first

step. Results are shown for HuMoR and a modified HuMoR (Qual) that uses JSMPL as input to

each step during rollout instead of J, thereby enforcing skeleton consistency. This version produces

qualitatively superior results for generation, but is too expensive to use during TestOpt.

For prediction, we report average displacement error (ADE) and final displacement error

(FDE) [295], which measure mean joint errors over all steps and at the final step, respectively.

We sample 50 2s motions for each initial state and the one with lowest ADE is considered the

prediction. For diversity, we sample 50 5s motions and compute the average pairwise distance

(APD) [5], i.e. the mean joint distance between all pairs of samples.

As seen in Tab. 2.1, the base MVAE [147] does not generalize well when trained on the large

AMASS dataset; our proposed CVAE improves both the accuracy and diversity of samples. HuMoR

(Qual) hinders prediction accuracy, but gives better diversity and visual quality.

CHAPTER 2. 3D HUMAN MOTION MODELS FOR POSE ESTIMATION 24

Positional Error Joints Mesh Ground Pen
Method Input Vis Occ All Legs Vtx Contact Accel Freq Dist
VPoser-t Occ Keypoints 0.67 20.76 9.22 21.08 7.95 - 5.71 16.77% 2.28
MVAE [147] Occ Keypoints 2.39 19.15 9.52 16.86 8.90 - 7.12 3.15% 0.30
HuMoR (Ours) Occ Keypoints 1.46 17.40 8.24 15.42 7.56 0.89 5.38 3.31% 0.26
VPoser-t Noisy Joints - - 3.67 4.47 4.98 - 4.61 1.35% 0.07
MVAE [147] Noisy Joints - - 2.68 3.21 4.42 - 6.5 1.75% 0.11
HuMoR (Ours) Noisy Joints - - 2.27 2.61 3.55 0.97 5.23 1.18% 0.05

Table 2.2: Motion and shape estimation from 3D observations: partially occluded keypoints (top)
and noisy joints (bottom). Positional Error (cm) is reported w.r.t. the input modality. Acceleration is
m/s2 and penetration distance in cm.

Figure 2.4: TestOpt with HuMoR recovers complex contact patterns involving feet, knees, and hands
from noisy 3D joint observations (shown on top along with the ground truth motion).

2.5.4 Estimation from 3D Observations

Next, we show that HuMoR also generalizes better when used in TestOpt for fitting to 3D data, and

that using a motion prior is crucial to plausibly handling occlusions. 3s AMASS sequences are used

to demonstrate key abilities: (i) fitting to partial data and (ii) denoising. For the former, TestOpt fits

to 43 keypoints on the body that resemble motion capture markers; keypoints that fall below 0.9m at

each timestep are “occluded”, leaving the legs unobservable at most steps. For denoising, Gaussian

noise with 4cm standard deviation is added to 3D joint position observations.

Tab. 2.2 compares to VPoser-t and to using MVAE as the motion prior during optimization

rather than HuMoR. We report leg joint errors (toes, ankles, and knees), which are often occluded,

separately. The right side of the table reports plausibility metrics. HuMoR gives more accurate

poses, especially for occluded keypoints and leg joints. It also estimates smoother motions with

fewer and less severe ground penetrations. For denoising, VPoser-t oversmooths which gives the

lowest acceleration but least accurate motion. TestOpt with HuMoR gives inherently smooth results

CHAPTER 2. 3D HUMAN MOTION MODELS FOR POSE ESTIMATION 25

Figure 2.5: Baseline comparison when fitting to partial 3D keypoints. GT+Obs shows the ground
truth body motion and observed keypoints in blue, while each method output shows the predicted
motion with the observed keypoints for reference.

Global Joint Error Root-Aligned Joint Error Ground Pen
Method Vis Occ All Legs Vis Occ All Legs Accel Freq Dist
VIBE [126] 90.05 192.55 116.46 121.61 12.06 23.78 15.08 21.65 243.36 7.98% 3.01
VPoser-t 28.33 40.97 31.59 35.06 12.77 26.48 16.31 25.60 4.46 9.28% 2.42
MVAE [147] 37.54 50.63 40.91 44.42 16.00 28.32 19.17 26.63 4.96 7.43% 1.55
No Delta 27.55 35.59 29.62 32.14 11.92 23.10 14.80 21.65 3.05 2.84% 0.58
No Contacts 26.65 39.21 29.89 35.73 12.24 23.36 15.11 22.25 2.43 5.59% 1.70
No LSMPL 31.09 43.67 34.33 36.84 12.81 25.47 16.07 23.54 3.21 4.12% 1.31
Standard Prior 77.60 146.76 95.42 99.01 18.67 39.40 24.01 34.02 5.98 8.30% 6.47
HuMoR (Ours) 26.00 34.36 28.15 31.26 12.02 21.70 14.51 20.74 2.43 2.12% 0.68

Table 2.3: Motion and shape from RGB video (i.e. 2D joints) on i3DB [172]. Joint errors are in cm
and acceleration is m/s2. Top shows results from motion estimation baselines while bottom uses
ablations of HuMoR during optimization.

while still allowing for necessarily large accelerations to fit dynamic observations. Notably, HuMoR

predicts person-ground contact with 97% accuracy even under severe noise.

Qualitative results for both tasks are shown in Fig. 2.1 and Fig. 2.3. Fig. 2.4 show denoising

results using our method for a crawling sequence. Note that HuMoR recovers complex contact

patterns involving not only the feet, but also hands and knees. A qualitative comparison to baselines

for fitting to partial keypoints is shown in Fig. 2.5. VPoser-t fails to produce any plausible lower-body

motion since it uses only a pose prior, while using MVAE as the motion prior often gives unnatural

and implausible motions that do not align well with the observed keypoints.

CHAPTER 2. 3D HUMAN MOTION MODELS FOR POSE ESTIMATION 26

Figure 2.6: Qualitative comparison for fitting to RGB video (i.e. 2D joints) from i3DB [172].
Optimization using HuMoR (Ours) outputs natural and plausible sitting and walking motions under
heavy occlusions compared to baseline approaches.

2.5.5 Estimation from RGB(-D) Observations

Finally, we show that TestOpt with HuMoR can be applied to real-world RGB and RGB-D observa-

tions, and outperforms baselines on positional and plausibility metrics especially from partial and

noisy data. We use 3s (90 frame) clips from i3DB [172] and PROX [93]. Tab. 2.3 shows results on

i3DB which affords quantitative 3D joint evaluation. The top half compares to baseline estimation

methods; the bottom uses ablations of HuMoR in TestOpt rather than the full model. Mean per-joint

position errors are reported for global joint positions and after root alignment.

As seen in Tab. 2.3, VIBE gives locally accurate predictions for visible joints, but large global

errors and unrealistic accelerations due to occlusions and temporal inconsistency (see Fig. 2.6).

VPoser-t gives reasonable global errors, but suffers frequent penetrations as shown for sitting

in Fig. 2.6. Using MVAE or ablations of HuMoR as the motion prior in TestOpt fails to effectively

generalize to real-world data and performs worse than the full model. The conditional prior and

LSMPL have the largest impact, while performance even without using contacts still outperforms the

baselines.

The top half of Tab. 2.4 evaluates plausibility on additional RGB results from PROX compared

to VIBE and PROX-RGB. Since PROX-RGB uses the scene mesh as input to enforce environment

constraints, it is a very strong baseline and its performance on penetration metrics is expectedly good.

HuMoR comparatively increases penetration frequency since it only gets a rough ground plane as

initialization, but gives much smoother motions. The bottom half of Tab. 2.4 shows results fitting

to RGB-D for the same PROX data, which uses both E2D
data and EPC3D

data in TestOpt. This improves

performance using HuMoR, slightly outperforming PROX-D which is less robust to issues with 2D

CHAPTER 2. 3D HUMAN MOTION MODELS FOR POSE ESTIMATION 27

Figure 2.7: From RGB-D (top) TestOpt with HuMoR outputs 3D motion, the ground plane, and
contacts (bottom).

joint detections and 3D point noise causing large errors. Qualitative examples are in Fig. 2.1 and

Fig. 2.7.

Thanks to the generalizability of HuMoR, TestOpt is also effective in recovering very dynamic

motions like dancing from RGB video even though HuMoR is trained on few dancing motions.

Fig. 2.8 shows fitting results on videos from the AIST dance dataset [255]. Since HuMoR allows for

large accelerations, it accurately generalizes to fast motions (top - note motion blur). Moreover, it is

able to recover from poor 2D joint detections from OpenPose due to the cartwheel motion (bottom).

Ground Pen
Method Input Accel Freq Dist
VIBE [126] RGB 86.06 23.46% 4.71
PROX-RGB [93] RGB 196.07 2.55% 0.32
VPoser-t RGB 3.14 13.38% 2.82
HuMoR (Ours) RGB 1.73 9.99% 1.56
PROX-D [93] RGB-D 46.59 8.95% 1.19
VPoser-t RGB-D 3.27 10.66% 2.18
HuMoR (Ours) RGB-D 1.61 5.19% 0.85

Table 2.4: Plausibility evaluation on videos in PROX [93]. Acceleration is m/s2 and penetration
distance in cm.

CHAPTER 2. 3D HUMAN MOTION MODELS FOR POSE ESTIMATION 28

Figure 2.8: Example sequences using TestOpt with HuMoR to fit to 2D joints in AIST dance
videos [255]. HuMoR generalizes to these highly dynamic motions and robustly recovers from
inaccurate 2D joint detections (bottom).

2.6 Discussion

We have introduced HuMoR, a learned generative model of 3D human motion leveraged during

test-time optimization to robustly recover pose and shape from 3D, RGB, and RGB-D observations.

We have demonstrated that the key components of our model enable generalization to novel motions

and body shapes for both generative tasks and downstream optimization. Compared to strong

learning and optimization-based baselines, HuMoR excels at estimating plausible motion under

heavy occlusions, and simultaneously produces consistent ground plane and contact outputs.

In developing HuMoR, it was necessary to tackle nearly all the challenges outlined in Sec. 1.1.1.

To get accuracy and diversity, we used the generative CVAE architecture that operates in the

structured human pose space. Some basic notion of interactions was also considered by predicting

ground contacts, though capturing more detailed human-environment interactions is an important

future direction (see Chapter 6). HuMoR generalizes to new motions and body shapes thanks to the

single-step transition formulation and latent variable architecture to account for the unobservable

CHAPTER 2. 3D HUMAN MOTION MODELS FOR POSE ESTIMATION 29

Figure 2.9: Failure cases of TestOpt using HuMoR.

factors of human motion. Lastly, we were able to control human motions to match video observations

by using optimization in the learned latent space.

Limitations & Future Work. HuMoR leaves ample room for future studies. The static camera and

ground plane assumptions are reasonable for indoor scenes but true in-the-wild operation demands

methods handling dynamic cameras and complex terrain. Our rather simplistic contact model

should be upgraded to capture scene-person interactions for improved motion and scene perception.

Lastly, we plan to learn motion estimation directly from partial observations which will be faster

than TestOpt and enable sampling multiple plausible motions rather than relying on a single local

minimum.

Specific failure cases shown in Fig. 2.9 further highlight areas of future improvement. First,

extreme occlusions (e.g. only a few visible points as in Fig. 2.9 left), especially at the first frame

which determines x0, makes for a difficult optimization that often lands in local minima with

implausible motions. Second, uncommon motions that are rare during CVAE training, such as

laying down in Fig. 2.9 (middle), can cause spurious ground plane outputs as TestOpt attempts to

make the motion more likely. Leveraging more holistic scene understanding methods and models

of human-environment interaction will help in these cases. Finally, our method is dependent on

motion in order to resolve ambiguity, which is usually very helpful but has corner cases as shown in

Fig. 2.9 (right). For example, if the observed person is nearly static, the optimization may produce

implausible poses due to ambiguous occlusions (e.g. standing when really the person is sitting)

and/or incorrect ground plane estimations.

2.7 Additional Related Contributions

This section briefly describes additional contributions made to the area of 3D human motion modeling.

In particular, Sec. 2.7.1 summarizes a physics-based approach to modeling human motion for pose

CHAPTER 2. 3D HUMAN MOTION MODELS FOR POSE ESTIMATION 30

Figure 2.10: Overview of contact and human dynamics from video. Our method starts with initial
estimates from existing 2D and 3D pose methods and first infers foot contacts (orange box). A
reduced-dimensional physics-based trajectory optimization fits to the 3D pose input using estimated
contacts. This optimization recovers physically-plausible pose and foot contact forces.

estimation [208] in contrast to the learned HuMoR model.

2.7.1 Physics-Based Human Motion Modeling

Recent methods for human pose estimation from monocular video estimate accurate overall body

pose with small absolute differences from the true poses in body-frame 3D coordinates. However, the

recovered motions in world-frame are visually and physically implausible in many ways, including

feet that float slightly or penetrate the ground, implausible forward or backward body lean, and

motion errors like jittery, vibrating poses. As summarized in Fig. 2.10, we present a physics-based

method for inferring 3D human motion from video sequences that takes initial 2D and 3D pose

estimates as input. We first estimate ground contact timings with a novel prediction network, which

is trained without hand-labeled data. A physics-based trajectory optimization then solves for a

physically-plausible motion, based on the inputs.

We show this process produces motions that are significantly more realistic than those from

purely kinematic methods, substantially improving quantitative measures of both kinematic and

dynamic plausibility. We demonstrate our method on character animation and pose estimation tasks

on dynamic motions of dancing and sports with complex contact patterns. Please refer to the paper

for full technical details and results [208].

Chapter 3

Modeling 3D Object Motion for Point
Cloud Perception

In Chapter 2, we saw that 3D humans have a structured kinematic pose that offers an obvious state

space for modeling motion. Therefore, HuMoR made predictions for how pose would change over

time explicitly within this state space consisting of joint positions, angles, and velocities. However,

3D objects generally experience a huge variety of motions. For example, rigid motion as a result of

the object or observer moving, and deformation that creates complex changes in underlying geometry.

Even if objects move in an articulated manner like humans, we may not know what the kinematic

structure of their skeleton is, or the skeleton may change across instances in an object class.

This variation in motion type makes modeling the change in 3D object pose over time challenging.

There is no obvious low-dimensional pose space that will allow us to flexibly capture all rigid,

articulated, and deformable motion. In this chapter, we look at how to model 3D object motion

more generally by considering how its shape changes over time from the perspective of a 3D sensor

that produces dynamic point clouds. To achieve this, we will introduce a method called CaSPR,

which contains a latent model of object motion that is flexible to rigid and deformable motions alike.

CaSPR was originally published in NeurIPS 2020 [207].

3.1 Introduction

The visible geometric properties of objects around us are constantly evolving over time due to object

motion, articulation, deformation, or observer movement. Examples include the rigid motion of cars

on the road, the deformation of clothes in the wind, and the articulation of moving humans. The ability

31

CHAPTER 3. MODELING 3D OBJECT MOTION FOR POINT CLOUD PERCEPTION 32

to capture and reconstruct these spatiotemporally changing geometric object properties is critical in

applications like autonomous driving, robotics, and mixed reality. Recent work has made progress

on learning object shape representations from static 3D observations [185, 204, 205, 237, 277] and

dynamic point clouds [37, 42, 152, 153, 177, 200, 304]. Yet, important limitations remain in terms

of the lack of temporal continuity, robustness, and category-level generalization.

Flow in space (CNF)

Fl
o

w
 in

 t
im

e
(L

at
en

t
O

D
E)

Figure 3.1: CaSPR builds a point cloud
representation of (partially observed) objects
continuously in both space (x-axis) and time
(y-axis), while canonicalizing for extrinsic
object properties like pose.

In this chapter, we address the problem of learning

object-centric representations that can aggregate and en-

code spatiotemporal (ST) changes in object shape as

seen from a 3D sensor. This is challenging since dy-

namic point clouds captured by depth sensors or LIDAR

are often incomplete and sparsely sampled over space

and time. Furthermore, even point clouds corresponding

to adjacent frames in a sequence will experience large

sampling variation. Ideally, we would like spatiotempo-

ral representations to satisfy several desirable properties.

First, representations should allow us to capture object

shape continuously over space and time. They should

encode changes in shape due to varying camera pose or

temporal dynamics, and support shape generation at arbitrary spatiotemporal resolutions. Second,

representations should be robust to irregular sampling patterns in space and time, including support

for full or partial point clouds. Finally, representations should support within-category generalization
to unseen object instances and to unseen temporal dynamics. While many of these properties are

individually considered in prior work [42, 114, 153, 177, 262], a unified and rigorous treatment of

all these factors in space and time is largely missing.

We address the limitations of previous work by learning a novel object-centric ST representation

which satisfies the above properties. To this end, we introduce CaSPR – a method to learn Canonical

Spatiotemporal Point Cloud Representations. In our approach, we split the task into two: (1) canon-

icalizing an input object point cloud sequence (partial or complete) into a shared 4D container

space, and (2) learning a continuous ST latent representation on top of this canonicalized space.

For the former, we build upon the Normalized Object Coordinate Space (NOCS) [241, 273] which

canonicalizes intra-class 3D shape variation by normalizing for extrinsic properties like position,

orientation, and scale. We extend NOCS to a 4D Temporal-NOCS (T-NOCS), which additionally

normalizes the duration of the input sequence to a unit interval. Given dynamic point cloud sequences,

CHAPTER 3. MODELING 3D OBJECT MOTION FOR POINT CLOUD PERCEPTION 33

our ST canonicalization yields spacetime-normalized point clouds. In Sec. 3.5, we show that this

allows learning representations that generalize to novel shapes and dynamics.

We learn ST representations of canonicalized point clouds using Neural Ordinary Differential

Equations (Neural ODEs) [37]. Different from previous work, we use a Latent ODE that operates in

a lower-dimensional learned latent space which increases efficiency while still capturing object shape

dynamics. Given an input sequence, the canonicalization network and Latent ODE together extract

features that constitute an ST representation. To continuously generate novel spatiotemporal point

clouds conditioned on an input sequence, we further leverage invertible Continuous Normalizing

Flows (CNFs) [34, 78] which transform Gaussian noise directly to the visible part of an object’s

shape at a desired timestep. Besides continuity, CNFs provide direct likelihood evaluation which

we use as a training loss. Together, as shown in Fig. 3.1, the Latent ODE and CNF constitute a

generative model that is continuous in spacetime and robust to sparse and varied inputs. Unlike

previous work [42, 153], our approach is continuous and explicitly avoids treating time as another

spatial dimension by respecting its unique aspects (e.g., unidirectionality).

We demonstrate that CaSPR is useful in numerous applications including (1) continuous space-

time shape reconstruction from sparse, partial, or temporally non-uniform input point cloud sequences,

(2) spatiotemporal 6D pose estimation, and (3) information propagation via space-time correspon-

dences under rigid or non-rigid transformations. Our experiments show improvements to previous

work while also providing insights on the emergence of intra-class shape correspondence and the

learning of time unidirectionality [61]. In summary, our contributions are:

• The CaSPR encoder network that consumes dynamic object point cloud sequences and canoni-

calizes them to normalized spacetime (T-NOCS).

• The CaSPR representation of canonicalized point clouds using a Latent ODE to explicitly

encode temporal dynamics, and an associated CNF for generating shapes continuously in

spacetime.

• A diverse set of applications of this technique, including partial or full shape reconstruction,

spatiotemporal sequence recovery, camera pose estimation, and correspondence estimation.

Supplementary video results are available on the project webpage.

3.2 Related Work

Neural Representations of Point Sets. Advances in 2D deep architectures leapt into the realm of

https://geometry.stanford.edu/projects/caspr/

CHAPTER 3. MODELING 3D OBJECT MOTION FOR POINT CLOUD PERCEPTION 34

point clouds with PointNet [204]. The lack of locality in PointNet was later addressed by a diverse

set of works [51, 52, 143, 230, 244, 252, 278, 288, 313], including PointNet++ [205] – a permutation

invariant architecture capable of learning both local and global point features. We refer the reader to

Guo et al. [85] for a thorough review. Treating time as the fourth dimension, our method heavily

leverages propositions from these works. Continuous reconstruction of an object’s spatial geometry

has been explored by recent works in learning implicit shape representations [40, 90, 170, 185].

Spatiotemporal Networks for 3D Data. Analogous to volumetric 3D convolutions on video

frames [135, 264, 308], a direct way to process spatiotemporal point cloud data is performing

4D convolutions on a voxel representation. This poses three challenges: (1) storing 4D volumes

densely is inefficient and impractical, (2) direct correlation of spatial and temporal distances is

undesirable, and (3) the inability to account for timestamps can hinder the final performance. These

challenges have fostered further research along multiple fronts. For example, a large body of

works [11, 82, 152, 279] has addressed temporal changes between a pair of scans as per-point

displacements or scene flow [267]. While representing dynamics as fields of change is tempting,

such methods lack an explicit notion of time. MeteorNet [153] was an early work to learn flow on

raw point cloud sequences, however it requires explicit local ST neighborhoods which is undesirable

for accuracy and generalization. Prant et al. [200] use temporal frames as a cue of coherence to

stabilize the generation of points. CloudLSTM [304] models temporal dependencies implicitly within

sequence-to-sequence learning. Making use of time in a more direct fashion, MinkowskiNet [42]

proposed an efficient ST 4D CNN to exploit the sparsity of point sets. This method can efficiently

perform 4D sparse convolutions, but can neither canonicalize time nor perform ST aggregation.

OccupancyFlow [177] used occupancy networks [170] and Neural ODEs [37] to have an explicit

notion of time.

Our method can be viewed as learning the underlying kinematic spacetime surface of an object

motion: an idea from traditional computer vision literature for dynamic geometry registration [171].

Canonicalization. Regressing 3D points in a common global reference frame dates back to 6D

camera relocalization and is known as scene coordinates [234]. In the context of learning the normal-

ized object coordinate space (NOCS), [273] is notable for explicitly mapping the input to canonical

object coordinates. Thanks to this normalization, NOCS enabled category-level pose estimation and

has been extended to articulated objects [141], category-level rigid 3D reconstruction [43, 79, 115]

via multiview aggregation [241], and non-rigid shape reconstruction either via deep implicit sur-

faces [299] or by disentangling viewpoint and deformation [178]. Chen et al. [35] proposed a latent

variational NOCS to generate points in a canonical frame.

CHAPTER 3. MODELING 3D OBJECT MOTION FOR POINT CLOUD PERCEPTION 35

Normalizing Flows and Neural ODEs. The idea of transforming noise into data dates back to

whitening transforms [69] and Gaussianization [38]. Tabak and Turner [249] officially defined

normalizing flows (NFs) as the composition of simple maps and used it for non-parametric density

estimation. NFs were immediately extended to deep networks and high dimensional data by Rippel

and Adams [216]. Rezende and Mohamed used NFs in the setting of variational inference [214]

and popularized them as a standalone tool for deep generative modeling e.g. [123, 245]. Thanks to

their invertibility and exact likelihood estimation, NFs are now prevalent and have been explored

in the context of graph neural networks [150], generative adversarial networks [80], bypassing

topological limitations [7, 45, 60], flows on Riemannian manifolds [74, 157, 227], equivariant

flows [18, 128, 215], and connections to optimal transport [67, 180, 269, 306]. The limit case

where the sequence of transformations are indexed by real numbers yields continuous-time flows:

the celebrated Neural ODEs [34], their latent counterparts [220], and FFJORD [78], an invertible

generative model with unbiased density estimation. For a comprehensive review, we refer the reader

to the concurrent surveys of [125, 184].

Our algorithm is highly connected to PointFlow [287] and C-Flow [203]. However, we tackle

encoding and generating spatiotemporal point sets in addition to canonicalization while both of these

works use CNFs in generative modeling of 3D point sets without canonicalizing.

3.3 Background

In this section, we lay out the notation and mathematical background required in Sec. 3.4.

Definition 1 (Flow & Trajectory) Let us define a d-dimensional flow to be a parametric family of

homeomorphisms ϕ : M × R 7→ M acting on a vector z ∈ M ⊂ Rd with ϕ0(z) = z (identity

map) and ϕt(z) = zt. A temporal subspace of flows is said to be a trajectory T (z) = {ϕt(z)}t if

T (z) ∩ T (y) = ∅ for all z ̸= y, i.e., different trajectories never intersect [44, 60].

Definition 2 (ODE-Flow, Neural ODE & Latent ODE) For any given flow ϕ there exists a corre-

sponding ordinary differential equation (ODE) constructed by attaching an optionally time-dependent

vector f(z, t) ∈ Rd to every point z ∈ M resulting in a vector field s.t. f(z) = ϕ′(z)|t=0. Starting

from the initial state z0, this ODE given by dz(t)
dt = f(z(t), t) can be integrated for time T modeling

the flow ϕt=T :

zT = ϕT (z0) = z0 +

∫ T

0
fθ(zt, t) dt, (3.1)

CHAPTER 3. MODELING 3D OBJECT MOTION FOR POINT CLOUD PERCEPTION 36

where zt ≜ z(t) and the field f is parameterized by θ = {θi}i. By the Picard–Lindelöf theorem [44],

if f is continuously differentiable then the initial value problem in Eq. (3.1) has a unique solution.

Instead of handcrafting, Neural ODEs [37] seek a function f that suits a given objective by modeling

f as a neural network. We refer to a Neural ODE operating in a latent space as a Latent ODE.

Numerous forms of Neural ODEs model f(·) to be autonomous, i.e., time independent f(zt) ≡
f(zt, t) [37, 60, 220], whose output fully characterizes the trajectory. While a Neural ODE advects

single particles, generative modeling approximates the full target probability density which requires

expressive models capable of exact density evaluation and sampling that avoids mode collapse.

Definition 3 (Continuous Normalizing Flow (CNF)) Starting from a simple dB-dimensional base

distribution py with y0 ∈ RdB ∼ py(y), CNFs [34, 78] aim to approximate the complex target

distribution px(x) by bijectively mapping empirical samples of the target to the base using an

invertible function gβ : RdB 7→ RdB with parameters β = {βi}i. Then the probability density

function transforms with respect to the change of variables: log px(x) = log py(y)−log det∇gβ(y).

The warping function g can be replaced by an integral of continuous-time dynamics yielding a form

similar to Neural ODEs except that we now consider distributions [78]:

log px(x) = log py(y0)−
∫ T

0
Tr

(∂gβ(yt, t | z)
∂yt

)
dt, (3.2)

with the simplest choice that the base distribution y0 is in a d-dimensional ball, py ∼ N (0, I).

Here z ∈ Rd is an optional conditioning latent vector [287]. Note that this continuous system

is non-autonomous i.e., time varying and every non-autonomous system can be converted to an

autonomous one by raising the dimension to include time [49, 60].

3.4 Method

We consider as input a sequence of potentially partial, clutter-free 3D scans (readily captured by

depth sensors or LIDAR) of an object belonging to a known category. This observation is represented

as a point cloud X = {xi ∈ R3 = {xi, yi, zi} | i = 1, . . . ,M ′}. For a sequence of K potentially non-

uniformly sampled timesteps, we denote a spatiotemporal (ST) point cloud as P = {Pk}Kk=1, where

Pk = {pi ∈ R4 = {xi, yi, zi, sk} | i = 1, . . . ,Mk}, Mk is the number of points at frame k ∈ [1,K]

and at the time sk ∈ [s1, sK] ⊂ R with M =
∑K

k=1Mk. Our goal is to explain P by learning a

continuous representation of shape that is invariant to extrinsic properties while aggregating intrinsic

properties along the direction of time. CaSPR achieves this through:

CHAPTER 3. MODELING 3D OBJECT MOTION FOR POINT CLOUD PERCEPTION 37

…

maxpool

Latent ODE

Spatiotemporal
Local Features

Continuous Normalizing Flow (CNF)

T-NOCS

…

Reconstruction
Loss

3D Reconstruction
via Aggregation

R
ig

id
N

o
n

-r
ig

id

 o
r

T-
N

O
C

S

…

Continuous Spatiotemporal Sampling

C
o

n
ti

n
u

o
u

s
N

o
rm

al
iz

in
g

Fl
o

w

6D Rigid Camera
Pose Estimation

Spatiotemporal Interpolation &
Deformable Scene Flow Estimation

T-NOCS
Loss

TPointNet++

3D Reconstruction

3D
 B

as
e

G
au

ss
ia

n

Figure 3.2: Architecture and applications of CaSPR. Our model consumes rigid or deformable point cloud
sequences and maps them to a spatiotemporal canonical latent space whose coordinates are visualized by RGB
colors (purple box). Using a Latent ODE, it advects a latent subspace forward in time to model temporal
dynamics. A continuous normalizing flow [78] (shown in red) decodes the final latent code to 3D space by
mapping Gaussian noise to the partial or full shape at desired timesteps. CaSPR enables multiple applications
shown in green boxes. Training directions for the normalizing flow are indicated by dashed arrows.

1. A canonical spacetime container where extrinsic properties such as object pose are factored

out,

2. A continuous latent representation which can be queried at arbitrary spacetime steps, and

3. A generative model capable of reconstructing partial observations conditioned on a latent

code.

We first describe the method design for each of these components, depicted in Fig. 3.2, followed by

implementation and architectural details in Sec. 3.4.1.

Canonicalization: The first step is canonicalization of a 4D ST point cloud sequence with the goal

of associating observations at different time steps to a common canonical space. Unlike prior work

which assumes already-canonical inputs [177, 287], this step allows CaSPR to operate on raw point

cloud sequences in world space and enables multiple applications (see Fig. 3.2). Other previous work

has considered canonicalization of extrinsic properties from RGB images [241, 273] or a 3D point

cloud [141], but our method operates on a 4D point cloud and explicitly accounts for time labels.

Our goal is to find an injective spacetime canonicalizer cα(·) : P 7→ P × Z parameterized by

α = {αi}i, that maps a point cloud sequence P to a canonical unit tesseract P = {Pk}Kk=1, where

Pk = {pi ∈ R4 = {xi, yi, zi, tk} ∈ [0, 1] | i = 1, . . . ,Mk} and zC ∈ Z ⊂ Rd is the corresponding

canonical latent representation (embedding) of the sequence. Note that in addition to position and

orientation, P is normalized to have time in unit duration. We refer to P as Temporal-NOCS
(T-NOCS) as it extends NOCS [241, 273]. T-NOCS points are visualized using the spatial coordinate

as the RGB color in Figs. 3.2 and 3.3. Given a 4D point cloud in the world frame, we can aggregate

CHAPTER 3. MODELING 3D OBJECT MOTION FOR POINT CLOUD PERCEPTION 38

the entire shape from K partial views by a simple union: P =
⋃K

i=1 cα(Pi) [241]. Moreover, due

to its injectivity, cα(·) preserves correspondences, a property useful in tasks like pose estimation

or label propagation. We outline the details and challenges involved in designing a canonicalizer

in Sec. 3.4.1.

Continuous Spatiotemporal Representation: While a global ST latent embedding is beneficial for

canonicalization and aggregation of partial point clouds, we are interested in continuously modeling

the ST input, i.e., being able to compute a representation for unobserved timesteps at arbitrary

spacetime resolutions. To achieve this, we split the latent representation: zC = [zCST, z
C
dyn] where

zCST is the static ST descriptor and zCdyn is used to initialize an autonomous Latent ODE dzt
dt = fθ(zt)

as described in Dfn. 2: z0 = zCdyn ∈ Rd. We choose to advect the ODE in the latent space (rather

than physical space [177]) to (1) enable learning a space best-suited to modeling the dynamics of the

observed data, and (2) improve scalability due to the fixed feature size. Due to the time-independence

of fθ, z0 fully characterizes the latent trajectory. Advecting z0 forward in time by solving this

ODE until any canonical timestamp T ≤ 1 yields a continuous representation in time zT that can

explain changing object properties. We finally obtain a dynamic spatiotemporal representation in

the product space: z ∈ RD = [zCST, zT]. Due to canonicalization to the unit interval, T > 1 implies

extrapolation.

Spatiotemporal Generative Model: Numerous methods exist for point set generation [2, 79, 313],

but most are not suited for sampling on the surface of a partial 4D ST point cloud. Therefore, we

adapt CNFs [78, 287] as defined in Sec. 3.3. To generate a novel ST shape, i.e., a sequence of

3D shapes X1 . . .XK , we simulate the Latent ODE for t = 0 . . . T and obtain representations for

each of the canonical shapes in the sequence: zt=0 · · · zt=T . We then sample the base distribution

yk ∈ RdB=3 ∼ py(y) ≜ N (0, I) and evaluate the conditional CNF in Eq. (3.2) by passing each

sample yk through the flow gβ(yk | zt) conditioned on zt. Note that the flow is time dependent, i.e.,

non-autonomous. To increase the temporal resolution of the output samples we pick the timesteps

with higher frequency, whereas to densify spatially, we simply generate more samples yk.

3.4.1 Network Architecture

We now detail our implementations of the canonicalizer cα, Latent ODE network fθ, and CNF gβ .

TPointNet++ cα(·): The design of our canonicalizer is influenced by (1) the desire to avoid ST

neighborhood queries, (2) to treat time as important as the spatial dimensions, and (3) injecting how an

object appears during motion in space into its local descriptors resulting in more expressive features.

While it is tempting to directly apply existing point cloud architectures such as PointNet [204] or

CHAPTER 3. MODELING 3D OBJECT MOTION FOR POINT CLOUD PERCEPTION 39

T-
N

O
C

S
G

T-
TN

O
C

S

…

…

PointNet

PointNet++

(𝑥, 𝑦, 𝑧, 𝑡)

(𝑥, 𝑦, 𝑧)

repeated global
feature

spatial local features

spatiotemporal local features

1024 64

512

Shared MLP
(1600 x 1600)

L1 loss

(𝑇x 𝑀 x 4)

…

Figure 3.3: Architecture of our ST point-set canonicalization network, TPointNet++. It uses two branches
that extract ST features using a 4D PointNet and per-view 3D local features via PointNet++. These features
are combined and passed to an MLP to regress the T-NOCS points. Training is supervised via GT coordinates.

PointNet++ [205], we found experimentally that they were individually insufficient (c.f. Sec. 3.5).

To meet our goals, we instead introduce a hybrid TPointNet++ architecture as shown in Fig. 3.3

to implement cα and canonicalize P to P . TPointNet++ contains a PointNet branch that consumes

the entire 4D point cloud to extract both a 1024-dimensional global feature and 64-dimensional

per-point ST features. This treats time explicitly and equally to each spatial dimension. We also

use PointNet++ to extract a 512-dimensional local feature at each input point by applying it at each

cross-section in time with no timestamp. We feed all features into a shared multi-layer perceptron

(MLP) to arrive at 1600-dimensional embeddings corresponding to each input point.

We use the pointwise embeddings in two ways: (1) they are passed through a shared linear layer

followed by a sigmoid function to estimate the T-NOCS coordinates P̂ which approximate the ground

truth P , and (2) we max-pool all per-point features into a single latent representation of T-NOCS

zC ∈ R1600 which is used by the Latent ODE and CNF as described below. The full canonicalizer

cα(·) can be trained independently for T-NOCS regression, or jointly with a downstream task.

Latent ODE fθ(·) and Reconstruction CNF gβ(·): The full CaSPR architecture is depicted

in Fig. 3.2. It builds upon the embedding from TPointNet++ by first splitting it into two parts

zC = [zCST, z0 ≜ zCdyn]. The dynamics network of the Latent ODE fθ is an MLP with three hidden

layers of size 512. We use a Runge-Kutta 4(5) solver [133, 223] with adaptive step sizes which

supports backpropagation using the adjoint method [37]. The static feature, zCST ∈ R1536 is skip-

connected and concatenated with zT to yield z ∈ R1600 which conditions the reconstruction at

t = T .

To sample the surface represented by z, we use a FFJORD conditional-CNF [78, 287] as explained

in Secs. 3.3 and 3.4 to map 3D Gaussian noise y0 ∈ RdB=3 ∼ N (0, I) onto the shape surface. The

dynamics of this flow gβ(yt, t | z) are learned with a modified MLP [78] which leverages a gating

mechanism at each layer to inject information about the current context including z and current time

t of the flow. This MLP contains three hidden layers of size 512, and we use the same solver as the

CHAPTER 3. MODELING 3D OBJECT MOTION FOR POINT CLOUD PERCEPTION 40

Figure 3.4: Canonicalization applications. Partial shape reconstruction (left section) shows pairs of GT
(left) and predicted shapes (right). Pose estimation (right section) shows GT (green, solid) and predicted (red,
dashed) camera pose based on regressed T-NOCS points. Points are colored by their T-NOCS location.

Latent ODE.

Training and Inference: CaSPR is trained with two objectives that use the GT canonical point

cloud sequence P as supervision. We primarily seek to maximize the log-likelihood of canonical

spatial points on the surface of the object when mapped to the base Gaussian using the CNF. This

reconstruction loss is Lr = −
∑K

k=1

∑Mk
i=1 log px(xi | ztk) where xi is the spatial part of pi ∈ Pk

and the log-likelihood is computed using Eq. (3.2). Secondly, we supervise the T-NOCS predictions

from TPointNet++ with an L1 loss Lc =
∑M

i=1 |p̂i − pi| with pi ∈ P and p̂i ∈ P̂ . We jointly train

TPointNet++, the Latent ODE, and CNF for α, θ and β respectively with the final loss L = Lr +Lc.

During inference, TPointNet++ processes a raw point cloud sequence of an unseen shape and motion

to obtain the ST embedding and canonicalized T-NOCS points. The Latent ODE, initialized by this

embedding, is solved forward in time to any number of canonical “query” timestamps. For each

timestamp, the Latent ODE produces the feature to condition the CNF which reconstructs the object

surface by the forward flow of Gaussian samples. The combined continuity of the Latent ODE and

CNF enables CaSPR to reconstruct the input sequence at any desired ST resolution.

3.5 Experimental Evaluations

We now evaluate the canonicalization, representation, and reconstruction capabilities of CaSPR,

demonstrate its utility in multiple downstream tasks, and justify design choices.

Dataset and Preprocessing: We introduce a new dataset containing simulated rigid motion of

objects in three ShapeNet [32] categories: cars, chairs, and airplanes. The motion is produced with

randomly generated camera trajectories (Fig. 3.4) and allows us to obtain the necessary inputs and

supervision for CaSPR: sequences of raw partial point clouds from depth maps with corresponding

canonical T-NOCS point clouds. Each sequence contains K = 10 frames with associated timestamps.

Raw point cloud sequences are labeled with uniform timestamps from s1 = 0.0 to sK = 5.0 while

CHAPTER 3. MODELING 3D OBJECT MOTION FOR POINT CLOUD PERCEPTION 41

canonicalized timestamps range from t1 = 0 to tK = 1. For training, 5 frames with 1024 points are

randomly subsampled from each sequence, giving non-uniform step sizes between observations. At

test time, we use a different spatiotemporal sampling for sequences of held-out object instances: all

10 frames, each with 2048 points. Separate CaSPR models are trained for each shape category.

Evaluation Procedure: To measure canonicalization errors, T-NOCS coordinates are split into the

spatial and temporal part with GT given by X̄ and t respectively. The spatial error at frame k is
1

Mk

∑Mk
i=1 ∥x̂i − xi∥2 and the temporal error is 1

Mk

∑Mk
i=1 |t̂i − ti| . For reconstruction, the Chamfer

Distance (CD) and Earth Mover’s Distance (EMD) are measured (and reported multiplied by 103).

For our purposes, we define the CD between two point clouds X1,X2 each with N points as

dCD (X1,X2) =
1

N

∑
x1∈X1

min
x2∈X2

∥x1 − x2∥22 +
1

N

∑
x2∈X2

min
x1∈X1

∥x1 − x2∥22 (3.3)

and the EMD as

dEMD (X1,X2) = min
ϕ:X1→X2

1

N

∑
x1∈X1

∥x1 − ϕ(x1)∥22 (3.4)

where ϕ : X1 → X2 is a bijection. In practice, we use a fast approximation of the EMD based

on [15]. Lower is better for all metrics; we report the median over all test frames because outlier

shapes cause less informative mean errors. Unless stated otherwise, qualitative point cloud results

(e.g., Fig. 3.4) are colored by their canonical coordinate values (so corresponding points should have

the same color).

3.5.1 Evaluations and Applications

Canonicalization: We first evaluate the accuracy of canonicalizing raw partial point cloud sequences

to T-NOCS using TPointNet++. Tab. 3.1 shows median errors over all frames in the test set. The

bottom part evaluates TPointNet++ on each shape category while the top compares with baselines on

cars. We consider the following baselines:

• MeteorNet [153]: A recent method that extends PointNet++ to process point cloud sequences

through spatiotemporal neighborhood queries. We adapt the MeteorNet-seg version of the

architecture with direct grouping for our task.

• PointNet++ No Time: An ablation of TPointNet++ that removes the PointNet component. This

leaves PointNet++ processing each frame independently followed by the shared MLP, and

therefore has no notion of time.

CHAPTER 3. MODELING 3D OBJECT MOTION FOR POINT CLOUD PERCEPTION 42

Method Category Spatial Err Time Err

MeteorNet Cars 0.0633 0.0001
PointNet++ No Time 0.0530 —
PointNet++ w/ Time 0.0510 0.0005

PointNet 0.0250 0.0012
TPointNet++ No Time 0.0122 —

TPointNet++ Cars 0.0118 0.0011
TPointNet++ Chairs 0.0102 0.0008
TPointNet++ Airplanes 0.0064 0.0009

Table 3.1: Canonicalization performance.

• PointNet++ w/ Time: This is the same ablation as above, but modified so that the PointNet++

receives the timestamp of each point as an additional input feature. This baseline represents a

naive way to incorporate time, but dilutes its contributions since it is only an auxiliary feature.

• PointNet: An ablation of TPointNet++ that removes the PointNet++ component. This leaves

only PointNet operating on the full 4D spatiotemporal point cloud. This baseline treats time

equally as the spatial dimensions, but inherently lacks local geometric features.

• TPointNet++ No Time: An ablation of TPointNet++ that only regresses the spatial part of

the T-NOCS coordinate (and not the normalized timestamp). This baseline still takes the

timestamps as input, but does not regress the last time coordinate.

Notably, for spatial prediction, TPointNet++ outperforms variations of both PointNet [204] and

PointNet++ [205], along with their spatiotemporal extension MeteorNet [153]. This indicates that our

ST design yields more distinctive features both spatially and temporally. MeteorNet and PointNet++

(with time) achieve impressive time errors thanks to skip connections that pass the input timestamps

directly towards the end of the network. Qualitative results of canonicalization are in Fig. 3.4.

Fig. 3.6(c) shows canonicalization results using TPointNet++ trained jointly within the full CaSPR

model rather than individually.

Representation and Reconstruction: We evaluate CaSPR’s ability to represent and reconstruct ob-

served and unobserved frames of raw partial point cloud sequences. The full model is trained on each

category separately using both Lr and Lc, and is compared to two baselines. The first is a variation

of CaSPR where the CNF is replaced with an AtlasNet [79] decoder using 64 patches – an alternative

approach to achieve spatial continuity. This model is trained with Lc and a CD loss (rather than Lr).

CHAPTER 3. MODELING 3D OBJECT MOTION FOR POINT CLOUD PERCEPTION 43

10 Observed 3 Observed 7 Unobserved
Method Category CD EMD CD EMD CD EMD

PointFlow Cars 0.454 12.838 0.455 12.743 0.525 13.911
CaSPR-Atlas 0.492 19.528 0.540 22.099 0.530 19.635
CaSPR 0.566 10.103 0.590 11.464 0.584 11.259

PointFlow Chairs 0.799 17.267 0.796 17.294 0.950 18.442
CaSPR-Atlas 0.706 48.665 0.723 48.912 0.749 47.322
CaSPR 0.715 13.009 0.681 13.310 0.683 13.564

PointFlow Airplanes 0.251 9.500 0.252 9.534 0.281 9.814
CaSPR-Atlas 0.237 18.827 0.255 18.525 0.269 17.933
CaSPR 0.231 6.026 0.215 6.144 0.216 6.175

Table 3.2: Partial surface sequence reconstruction. Chamfer (CD) and Earth Mover’s Distances (EMD) are
multiplied by 103. On the left (10 Observed), 10 frames are given as input and all are reconstructed. On the
right, 3 frames are used as input (3 Observed), but methods also reconstruct intermediate unseen steps (7
Unobserved).

Figure 3.5: Reconstruction results. CaSPR accurately
captures occlusion boundaries for camera motion at ob-
served and unobserved timesteps, unlike linear feature
interpolation with PointFlow.

The second baseline is the deterministic Point-

Flow [287] autoencoder trained to reconstruct a

single canonical partial point cloud. This model

operates on a single timestep and receives the

already canonical point cloud as input: an eas-

ier problem. We achieve temporal continuity

with PointFlow by first encoding a pair of adja-

cent observed point clouds to derive two shape

features, and then linearly interpolating to the

desired timestamp – one alternative to attain

temporal continuity. The interpolated feature

conditions PointFlow’s CNF to sample the partial surface, similar to CaSPR.

Tab. 3.2 reports median CD and EMD at reconstructed test steps for each method. We evaluate

two cases: (1) models receive and reconstruct all 10 observed frames (left), and (2) models get the first,

middle, and last steps of a sequence and reconstruct both these 3 observed and 7 unobserved frames

(right). CaSPR outperforms PointFlow in most cases, even at observed timesteps, despite operating

on raw point clouds in the world frame instead of canonical. Because PointFlow reconstructs each

frame independently, it lacks temporal context resulting in degraded occlusion boundaries (Fig. 3.5)

and thus higher EMD. CaSPR gives consistent errors across observed and unobserved frames due

to the learned motion prior of the Latent ODE, in contrast to linear feature interpolation that sees a

CHAPTER 3. MODELING 3D OBJECT MOTION FOR POINT CLOUD PERCEPTION 44

(b) Ground Truth - 10 (c) T-NOCS Prediction - 10 (d) CNF Prediction - 10 (e) CNF Prediction - 30

0.00 0.07

(a) Input Sequence - 10

Figure 3.6: Canonicalization, aggregation, and dense reconstruction of rigid motion sequences by the
full CaSPR model. Each sequence shows (a) the 10 observed raw partial point cloud frames given
as input to CaSPR, (b) the GT partial reconstruction based on the observed frames, (c) the partial
reconstruction achieved by aggregating T-NOCS predictions from TPointNet++ with color mapped
to spatial error, (d) the aggregated prediction after reconstructing the 10 observed frames with the
CNF, and (e) the aggregated prediction when interpolating 30 frames using the CNF.

marked performance drop for unobserved frames. The AtlasNet decoder achieves small CD since

this is the primary training loss, but has difficulty reconstructing the correct point distribution on the

CHAPTER 3. MODELING 3D OBJECT MOTION FOR POINT CLOUD PERCEPTION 45

Figure 3.7: Continuous interpolation results. From three sparse frames of input with GT canonical
points shown on top, CaSPR reconstructs the sequence more densely in space and time (middle).
Contours of the Gaussian flowed to the car surface are shown on bottom (red is highest probability).

partial surface due to the patch-based approach, resulting in much higher EMD for all cases.

Fig. 3.6(d) shows qualitative results of aggregated shape after reconstructing the 10 observed

frames with CaSPR.

Multiview Reconstruction: A direct application of TPointNet++ is partial shape reconstruction

of observed geometry through a union of predicted T-NOCS spatial points. Due to the quantitative

accuracy of TPointNet++ at each frame (Tab. 3.1), aggregated results closely match GT for unseen

instances in all categories as shown in Fig. 3.4 (left) and Fig. 3.6(c).

Method Category Trans Err Rot Err(◦) Point Err

RPM-Net Cars 0.0049 1.1135 0.0066
CaSPR 0.0077 1.3639 0.0096

RPM-Net Chairs 0.0026 0.4601 0.0036
CaSPR 0.0075 1.5035 0.0091

RPM-Net Airplanes 0.0040 0.5931 0.0048
CaSPR 0.0051 0.9456 0.0057

Table 3.3: Pose estimation using T-NOCS.

Rigid Pose Estimation: The world–canonical 3D

point correspondences from TPointNet++ allow fitting

rigid object (or camera) pose at observed frames using

RANSAC [68]. Tab. 3.3 reports median test errors show-

ing TPointNet++ is competitive with RPM-Net [290], a

recent specialized architecture for robust iterative rigid

registration. Note here, RPM-Net takes both the raw depth

and GT T-NOCS points as input. Translation and rotation errors are the distance and degree angle

difference from the GT transformation. Point error measures the per frame median distance between

the GT T-NOCS points transformed by the predicted pose and the input points. Qualitative results

are in Fig. 3.4 (right).

Rigid Spatiotemporal Interpolation: The full CaSPR model can densely sample a sparse input

sequence in spacetime as shown in Fig. 3.7. The model takes three input frames of 512 points

(corresponding GT T-NOCS points shown on top) and reconstructs an arbitrary number of steps

with 2048 points (middle). The representation can be sampled at any ST resolution but, in practice,

is limited by memory. The CNF maps Gaussian noise to the visible surface (bottom). Points are

CHAPTER 3. MODELING 3D OBJECT MOTION FOR POINT CLOUD PERCEPTION 46

Figure 3.8: Additional examples of spatiotemporal interpolation for sparse sequences.

most dense in high probability areas (shown in red); in our data this roughly corresponds to where

the camera is focused on the object surface at that timestep. Fig. 3.8 shows additional interpolation

results from sparse input sequence. Fig. 3.6(d) shows qualitative results of aggregated shape after

interpolating to 30 observed frames with CaSPR for more dense inputs from rigid object motion.

Reconstruction Correspondences

Method CD EMD Dist t1 Dist t10

OFlow 1.512 20.401 0.011 0.031
CaSPR 0.955 11.530 0.013 0.035

Table 3.4: Reconstructing 10 observed timesteps
(left) and maintaining temporal correspondences
(right) on Warping Cars.

Non-Rigid Reconstruction and Temporal Corre-
spondences: CaSPR can represent and reconstruct

deformable objects. We evaluate on a variation of the

Warping Cars dataset introduced in Occupancy Flow

(OFlow) [177] which contains 10-step sequences of

full point clouds sampled from ShapeNet [32] cars de-

forming over time. The sequences in this dataset are

already consistently aligned and scaled, so CaSPR is

trained only using Lr.

Tab. 3.4 compares CaSPR to OFlow on reconstructing deforming cars at 10 observed time steps

(left) and on estimating correspondences over time (right). To measure correspondence error, we (1)

sample 2048 points from the representation at t1, (2) find their closest points on the GT mesh, and

(3) advect the samples to t10 and measure the mean distance to the corresponding GT points at both

steps. Tab. 3.4 reports median errors over all t1 and t10. For OFlow, samples are advected using the

CHAPTER 3. MODELING 3D OBJECT MOTION FOR POINT CLOUD PERCEPTION 47

Figure 3.9: Reconstruction results on Warping Cars data. Each sequence is 10 steps in length and we
show point trajectories over time for (a) the ground truth input sequence, (b) the reconstruction from
Occupancy Flow, (c) the reconstruction at the 10 observed steps with CaSPR, and (d) 30 interpolated
steps with CaSPR.

predicted flow field in physical space, while for CaSPR we simply use the same Gaussian samples at

each step of the sequence.

CaSPR outperforms OFlow on reconstruction due to overly-smoothed outputs from the occupancy

network, while both methods accurately maintain correspondences over time. Note that CaSPR

advects system state in a learned latent space and temporal correspondences naturally emerge from

the CNF when using consistent base samples across timesteps. Fig. 3.9 visualizes sampled point

trajectories compared to OFlow for several sequences.

CHAPTER 3. MODELING 3D OBJECT MOTION FOR POINT CLOUD PERCEPTION 48

Figure 3.10: Cross-
instance correspondences
emerge naturally using a
CNF.

Cross-Instance Correspondences: We observe consistent behavior

from the CNF across objects within a shape category too. Fig. 3.10 shows

reconstructed frames from various chair and airplane sequences with

points colored by their corresponding location in the sampled Gaussian

(before the flow). Similar colors across instances indicate the same part

of the base distribution is mapped there. This could potentially be used,

for instance, to propagate labels from known to novel object instances.

Learning the Arrow of Time: A desirable property of ST representa-

tions is an understanding of the unidirectionality of time [61]: how objects

evolve forward in time. We demonstrate this property with CaSPR by

training on a dataset of 1000 sequences of a single rigid car where the

camera always rotates counter-clockwise at a fixed distance (but random height). CaSPR achieves a

median CD of 0.298 and EMD of 7.114 when reconstructing held-out sequences forward in time.

However, when the same test sequences are reversed by flipping the timestamps, accuracy drastically

drops to CD 1.225 and EMD 88.938. CaSPR is sensitive to the arrow of time due to the directionality

of the Latent ODE and the global temporal view provided by operating on an entire sequence jointly.

Figure 3.11: Disentanglement examples
on warping cars data.

Shape & Motion Disentanglement: We evaluate how

well CaSPR disentangles shape and motion as a result

of the latent feature splitting zC = [zCST, z
C
dyn]. For this

purpose, we transfer motion between two sequences by

embedding both of them using TPointNet++, then taking

the static feature zCST from the first and the dynamic feature

zCdyn from the second. Fig. 3.11 shows qualitative results

where each row is a different sequence; the first frame of

the shape sequence is on the left, the point trajectories of

the motion sequence in the middle, and the final CaSPR-

sampled trajectories using the combined feature are on

the right. If these features perfectly disentangle shape and

motion, we should see the shape of the first sequence with

the motion of the second after reconstruction. Apparently, the explicit feature split in CaSPR does

disentangle static and dynamic properties of the object to a large extent.

Label Propagation through Canonicalization: We evaluate the ability of T-NOCS canonicalization

to establish correspondences by propagating point-wise labels both throughout a sequence and to

CHAPTER 3. MODELING 3D OBJECT MOTION FOR POINT CLOUD PERCEPTION 49

Figure 3.12: Example of semantic segmentation label propagation over time and across instances
through T-NOCS canonicalization. The given labels in the first frame of the top sequence (orange
box) are transferred to later frames in the same sequence (green dashed box) and to other sequences
with different object instances (blue dashed boxes) by comparing to the labeled frame in the shared
canonical space.

new sequences of different object instances. Given a semantic segmentation of the partial point cloud

at the first frame of a sequence at time s1, the first task is to label all subsequent steps in the sequence

at times s2, . . . , sk, i.e. propagate the segmentation forward in time. Secondly, we want to label all

frames of sequences containing different object instances i.e. propagate the segmentation to different

objects of the same class. We achieve both through canonicalization with TPointNet++: all frames

in each sequence are mapped to T-NOCS, then unknown points are labeled by finding the closest

point in the given labeled frame at s1. If the closest point in s1 is not within a distance of 0.05 in the

canonical space, it is marked “Unknown“. This may happen if part of the shape is not visible in the

first frame due to self-occlusions.

Results of this label propagation for a subset of the chairs (1315 sequences) and airplanes

(1215 sequences) categories of the rigid motion test set are shown in Tab. 3.5. We report median

point-wise accuracy over all points (Total Acc) and for points successfully labeled by our approach

(Known Acc). For the instance propagation task, we randomly use 1/3 of test sequences as “source”

sequences where the first frame is labeled, and the other 2/3 are “target“ sequences to which labels

are propagated. In this case, accuracy is reported only for target sequences. Qualitative results are

shown in Fig. 3.12.

CHAPTER 3. MODELING 3D OBJECT MOTION FOR POINT CLOUD PERCEPTION 50

Figure 3.13: Failure cases of CaSPR. The CNF has difficulty capturing local details and very thin
structures (left) along with uncommon shapes (middle). TPointNet++ has trouble with symmetry or
ambiguity in partial views, resulting in reflected or rotated predictions (right).

3.6 Discussion

Task Category Total Acc Known Acc

Temporal Chairs 0.9419 0.9804

Propagation Airplanes 0.9580 0.9676

Instance Chairs 0.6553 0.8425

Propagation Airplanes 0.7744 0.8006

Table 3.5: Segmentation label propagation
performance. Total Acc is point-wise accu-
racy over all points; Known Acc is only for
points that our method successfully labels.

We introduced CaSPR, a method to canonicalize and

obtain object-centric representions of raw point cloud

sequences, which supports spatiotemporal sampling

at arbitrary resolutions. We demonstrated CaSPR’s

utility on rigid and deformable object motion and in

applications like spatiotemporal interpolation and es-

timating correspondences across time and instances.

Of the challenges outlined in Sec. 1.1.1, CaSPR

dealt primarily with achieving accuracy, generaliz-

ability, and robustness in order to successfully enable

point cloud perception tasks. These were addressed jointly by first canonicalizing the input point

cloud to remove extrinsic factors, making it easier to model the intrinsic change in shape. This

also allowed CaSPR to operate directly on partial point clouds in the frame of the sensor. The state

space of the motion model was a learned latent space that demonstrated flexibility to both rigid and

deformable objects. Finally, the motion was modeled using a neural ODE, which gave smooth latent

dynamics that are continuous in time.

Limitations and Future Work: CaSPR leaves ample room for future exploration. We currently only

support batch processing, but online processing is important for real-time applications. Additionally,

CaSPR is expensive to train. Our canonicalization step requires dense supervision of T-NOCS labels

which may not be available for real data. While the network is well-suited for ST interpolation, the

extrapolation abilities of CaSPR need further investigation. CaSPR is object-centric, and further

work is needed to generalize to object collections and scenes.

Moreover, CaSPR does fail in some specific cases. As shown in Fig. 3.13 (middle), outlier shapes

CHAPTER 3. MODELING 3D OBJECT MOTION FOR POINT CLOUD PERCEPTION 51

Figure 3.14: Qualitative results of spatiotemporal sequence refinement in SpOT. Refinement improves
the temporal consistency of detections, especially for sparse sequences. Predicted bounding boxes
are colored according to their L2 center error.

can cause noisy sampling results, and if the partial view of an object is ambiguous or the object is

symmetric, TPointNet++ may predict a flipped or rotated canonical output as seen in Fig. 3.13 (right).

Finally, using a single CNF for spatial sampling is fundamentally limited by an inability to model

changes in topology [45, 60]. We observe this in chairs with back slats and other thin structures

that are not captured by our Reconstruction CNF as shown in the left panel of Fig. 3.13. To capture

fine-scale geometric details of shapes, this must be addressed.

3.7 Additional Related Contributions

This section briefly describes additional contributions made to the area of 3D object motion modeling

and perception. Sec. 3.7.1 introduces SpOT [243], which tackles 3D multi-object tracking by

improving TPointNet++ to refine object tracklets containing both points and bounding boxes. Then,

Sec. 3.7.2 summarizes a method for predicting future 3D object states based on an initial point cloud

input and velocities[211].

3.7.1 Spatiotemporal Modeling for 3D Object Tracking

3D multi-object tracking aims to uniquely and consistently identify all mobile entities through time.

Despite the rich spatiotemporal information available in this setting, current 3D tracking methods

primarily rely on abstracted information and limited history, e.g. single-frame object bounding boxes.

In this work, we develop a holistic representation of traffic scenes that leverages both spatial and

temporal information of the actors in the scene. Our method, SpOT (Spatiotemporal Object Tracking),

CHAPTER 3. MODELING 3D OBJECT MOTION FOR POINT CLOUD PERCEPTION 52

Figure 3.15: Overview of predicting future 3D object motion from a point cloud input with linear
and angular velocities, vi and ωi (top left). Our goal is to predict, at each fixed time step, the change
in object state: 3D position (Pc), rotation (θc), linear and angular velocities (vc, ωc), and stability
(s). Our method can predict the dynamics of a variety of different shapes (top right), generalizes
to previously unseen object shapes and initial velocities, and tackles challenges such as wobbling
(bottom left) and toppling (bottom right) of moving objects.

reformulates tracking as a spatiotemporal problem by representing tracked objects as sequences

of time-stamped points and bounding boxes over a long temporal history. At each timestamp,

we improve the location and motion estimates of our tracked objects through learned refinement

over the full sequence of object history. By considering time and space jointly, our representation

naturally encodes fundamental physical priors such as object permanence and consistency across

time. Our spatiotemporal tracking framework achieves state-of-the-art performance on the Waymo

and nuScenes benchmarks.

As shown in Fig. 3.14, sequence refinement in SpOT learns a prior on object motion that is key

to getting temporally-consistent tracking in 3D point clouds. For full technical details and additional

results, please refer to the paper [243].

3.7.2 Predicting the Future Motion of 3D Objects

Machines that can predict the effect of physical interactions on the dynamics of previously unseen

object instances are important for creating better robots and interactive virtual worlds. In this work,

we focus on predicting the dynamics of 3D objects on a plane that have just been subjected to an

impulsive force. In particular, we predict the changes in state—3D position, rotation, velocities, and

stability. Different from previous work, our approach can generalize dynamics predictions to object

shapes and initial conditions that were unseen during training. Our method takes the 3D object’s

shape as a point cloud and its initial linear and angular velocities as input. We extract shape features

and use a recurrent neural network to predict the full change in state at each time step. Our model

CHAPTER 3. MODELING 3D OBJECT MOTION FOR POINT CLOUD PERCEPTION 53

can support training with data from both a physics engine or the real world. Experiments show that

we can accurately predict the changes in state for unseen object geometries and initial conditions.

Fig. 3.15 provides an overview of the key results of our method. Please refer to the paper for full

technical details and results [211].

Chapter 4

Learned Traffic Model for Scenario
Generation

Chapters 2 and 3 have shown that learned models of motion can greatly benefit perception tasks

involving 3D humans and objects, respectively. For example, with HuMoR we leveraged a VAE

model as a prior to recover human pose from video. As a generative model, this VAE, along with any

other type of generative motion model, is also useful for synthesizing motions. However, when it

comes to synthesizing motion rather than perceiving it, there are several modeling aspects that take

on increased importance.

First is the need to consider interactions between entities and with the environment. Besides

HuMoR modeling contacts with a single ground plane, interactions have been largely ignored in

the work presented up to this point. For humans, it is also no longer sufficient to model motion

while ignoring the high-level intent of a person. In HuMoR, we could randomly sample sequences of

full-body poses that are physically-plausible, but they would consist of random actions that appear

incoherent in terms of high-level behavior. While this formulation is generalizable and useful for

motion perception, using it to synthesize human motion in simulation will result in unrealistic and

erratic behavior. Finally, since generative applications are often creative, a user needs to have the

ability to control various aspects of motion synthesized from the model.

In Chapters 4 and 5, we will explore these aspects of motion modeling in the context of simulating

high-level human behavior. This involves predicting 2D top-down trajectories for both vehicles and

pedestrians, which move based on interaction constraints (e.g., avoiding collisions with each other

and following traffic laws). This kind of behavior simulation is crucial to applications that replicate

the real world with dynamic agents including vehicles, cyclists, and pedestrians. A particular focus

54

CHAPTER 4. LEARNED TRAFFIC MODEL FOR SCENARIO GENERATION 55

of this chapter is the application to autonomous vehicles (AVs), where it is necessary to simulate

realistic people and traffic to develop and evaluate safe driving policies. In this context, we will

see how controllability is important to (1) create scenarios to test specific aspects of an AV (this

chapter), and (2) add pedestrians that follow goals and realistically travel in social groups (Chapter 5).

Moreover, in Chapter 5 we will see that modeling behavior as 2D trajectories is even enough to

produce full-body 3D pedestrian animations.

In this chapter, we will introduce STRIVE, a method to generate accident scenarios for AV

planners that is a built on a learned model of traffic motion. This work was originally published in

CVPR 2022 [210].

4.1 Introduction

The safety of contemporary autonomous vehicles is defined by their ability to safely handle com-

plicated near-collision scenarios. However, these kinds of scenarios are rare in real-world driving,

posing a data-scarcity problem that is detrimental to both the development and testing of data-driven

models for perception, prediction, and planning. Moreover, the better models become, the more rare

these events will be, making the models even harder to train.

A natural solution is to synthesize difficult scenarios in simulation, rather than relying on real-

world data, making it easier and safer to evaluate and train AV systems. This approach is especially

appealing for planning, where the appearance domain gap is not a concern. For example, one

can manually design scenarios where the AV may fail by inserting adversarial actors or modifying

trajectories, either from scratch or by perturbing a small set of real scenarios. Unfortunately, the

manual nature of this approach quickly becomes prohibitively expensive when a large set of scenarios

is necessary for training or comprehensive evaluation.

Recent work looks to automatically generate challenging scenarios [276, 1, 55, 56, 268, 179, 124].

Generally, these approaches control a single or small group of “adversaries” in a scene, define an

objective (e.g. cause a collision with the AV), and then optimize the adversaries’ behavior or

trajectories to meet the objective. While most methods demonstrate generation of only 1 or 2

scenarios [1, 33, 124, 179], recent work [276] has improved scalability by starting from real-world

traffic scenes and perturbing a limited set of pre-chosen adversaries. However, these approaches lack

expressive priors over plausible traffic motion, which limits the realism and diversity of scenarios. In

particular, adversarial entities in a scenario are a small set of agents heuristically chosen ahead of

time; surrounding traffic will not be reactive and therefore perturbations must be careful to avoid

CHAPTER 4. LEARNED TRAFFIC MODEL FOR SCENARIO GENERATION 56

Figure 4.1: STRIVE generates challenging scenarios for a given planner. An adversarial optimization
perturbs a real-world scene in the latent space of a learned traffic model, causing an adversary (red)
to collide with the planner (green). A subsequent solution optimization finds a planner trajectory to
avoid collisions, verifying a scenario is useful for identifying planner improvements.

implausible situations (e.g. collisions with auxiliary agents). Furthermore, less attention has been

given to determining if a scenario is “unsolvable” [76], i.e., if even an oracle AV is incapable of

avoiding a collision. In this degenerate case, the scenario is not useful for evaluating/training a

planner.

In this chapter, we introduce STRIVE – a method for generating challenging scenarios to Stress-

Test dRIVE a given AV system. STRIVE attacks the prediction, planning, and control subset of the

AV stack, which we collectively refer to as the planner. As shown in Fig. 4.1, our approach perturbs

an initial real-world scene through an optimization procedure to cause a collision between an arbitrary

adversary and a given planner. Our core idea is to measure the plausibility of a scenario during

optimization by its likelihood under a learned generative model of traffic motion, which encourages

scenarios to be challenging, yet realistic. As a result, STRIVE does not choose specific adversaries

ahead of time, rather it jointly optimizes all scene agents, enabling a diverse set of scenarios to arise.

Moreover, in order to accommodate for non-differentiable (or inaccessible) planners, which are

CHAPTER 4. LEARNED TRAFFIC MODEL FOR SCENARIO GENERATION 57

widely used in practice, the proposed optimization uses a differentiable proxy representation of the

planner within the learned motion model, thus allowing standard gradient-based optimization to be

used.

We propose to identify and characterize generated scenarios that are useful for improving a

given planner. We first search for a “solution” to generated scenarios to determine if they are

degenerate, and then cluster solvable scenarios based on collision properties. We test STRIVE on two

AV planners, including a new rule-based planner, and show that it generates plausible and diverse

collision scenarios in both cases. We additionally use generated scenarios to improve the rule-based

planner by identifying fundamental limitations of its design and tuning hyperparameters.

In short, our contributions are: (i) a method to automatically generate plausible challenging

scenarios for a given planner, (ii) a solution optimization to ensure scenario utility, and (iii) an

analysis method to cluster scenarios by collision type. Supplementary videos for this work are

available on the project webpage.

4.2 Related Work

Traffic Motion Modeling. Scenario replay is insufficient for testing and developing AV planners as

the motion of non-ego vehicles is strongly coupled to the actions chosen by the ego planner. Advances

in deep learning have allowed us to replace traditional dynamic and kinematic models [272, 130, 138]

or rule-based simulators [156, 59] with neural counterparts that better capture traffic complexity

[9, 182]. Efforts to predict future trajectories from a short state history and an HD map can

generally be categorized according to the encoding technique, modeling of multi-modality, multi-

agent interaction, and whether the trajectory is estimated in a single step or progressively. The

encoding of surrounding context of each agent is often done via a bird’s-eye view (BEV) raster

image [47, 31, 65], though some work [146, 72] replaces the rasterization-based map encoding

with a lane-graph representation. SimNet [14] increased the diversity of generated simulations by

initializing the state using a generative model conditioned on the semantic map. To account for multi-

modality, multiple futures have been estimated either directly [47] or through trajectory proposals

[31, 65, 154, 198]. Modeling multi-actor interactions explicitly using dense graphs has proven

effective for vehicles [29, 248], lanes [146], and pedestrians [109, 228, 131]. Finally, step-by-step

prediction has performed favorably to one-shot prediction of the whole trajectory [57]. We follow

these works and design a traffic model that uses an inter-agent graph network [112] to represent

agent interaction and is variational, allowing us to sample multiple futures.

https://nv-tlabs.github.io/STRIVE

CHAPTER 4. LEARNED TRAFFIC MODEL FOR SCENARIO GENERATION 58

Our model builds on VAE-based approaches [29, 248] that provide a learned prior over a control-

lable latent space [206]. Among other design differences, we incorporate a penalty for environment

collisions and structure predictions through a bicycle model to ensure physical plausibility.

Challenging Scenario Generation. Generating scenarios has the potential to exponentially increase

scene coverage compared to relying exclusively on recorded drives. Advances in photo-realistic

simulators like CARLA [59] and NVIDIA’s DRIVE Sim, along with the availability of large-scale

datasets [26, 246, 63, 118, 105], have been instrumental to methods that generate plausible scene

graphs to improve perception [116, 53, 213] and planning [14, 29, 248, 120]. Our work focuses

on generating challenging – or “adversarial”1 – scenarios, which are even more crucial since they

are so rare in recorded data. While most works assume perfect perception and attack the planning

module [33, 124, 55, 56, 268, 76], recent efforts exploit the full stack, including image or point-cloud

perception [1, 179, 144, 276, 256]. Our work focuses on attacking the planner only, though our

scene parameterization as a learned traffic model could be incorporated into end-to-end methods.

Unlike our approach, which uses gradient-based optimization enabled by the learned motion model,

most adversarial generation works rely heavily on black-box optimization which may be slow and

unreliable.

Our scenario generation approach is most similar to AdvSim [276], however instead of optimizing

acceleration profiles of a simplistic bicycle model we use a more expressive data-driven motion

prior. This remedies the previous difficulty of controlling many adversarial agents simultaneously

in a plausible manner. Moreover, we avoid constraining the attack trajectory to not collide with

the playback AV by proposing a “solution” optimization stage to filter worthwhile scenarios. Prior

work [33] clusters lane-change scenarios based on trajectories of agents, while we cluster based on

collision properties between the adversary and planner.

AV Planners. Despite the recent academic interest in end-to-end learning-based planners and

AVs [225, 302, 224, 30, 9], rule-based planners remain the norm in practical AV systems [271].

Therefore, we evaluate our approach on a rule-based planner similar to the lane-graph-based planners

used by successful teams in the 2007 DARPA Urban Challenge [174, 257] detailed in Sec. 4.4.2.

4.3 Challenging Scenario Generation

STRIVE aims to generate high-risk traffic situations for a given planner, which can subsequently
1we use “challenging” to denote generation procedures that do not explicitly attack a specific module in the perception

or planning stack

CHAPTER 4. LEARNED TRAFFIC MODEL FOR SCENARIO GENERATION 59

be used to improve that planner (Fig. 4.1). For our purpose, the planner encapsulates prediction,

planning, and control, i.e. we are interested in scenarios where the system misbehaves even with

perfect perception. The planner takes as input past trajectories of other agents in a scene and outputs

the future trajectory of the vehicle it controls (termed the ego vehicle). It is assumed to be black-box:

STRIVE has no knowledge of the planner’s internals and cannot compute gradients through it.

Undesirable behavior includes collisions with other vehicles and non-drivable terrain, uncomfortable

driving (e.g. high accelerations), and breaking traffic laws. We focus on generating accident-prone
scenarios involving vehicle-vehicle collisions with the planner, though our formulation is general

and in principle can handle alternative objectives.

Similar to prior work [276], scenario generation is formulated as an optimization problem that

perturbs agent trajectories in an initial scenario from real-world data. The input is a planner f , map

M containing semantic layers for drivable area and lanes, and a sequence from a pre-recorded real-

world scene that serves as initialization for optimization. This initial scenario contains N agents with

trajectories represented in 2D BEV as Y = {Yi}Ni=1, where Yi = [yi
1,y

i
2, . . . ,y

i
T] is the sequence

of states for agent i. We let Yt = [y1
t ,y

2
t , . . . ,y

N
t] be the state of all agents at a single timestep. An

agent state yi
t = [xt, yt, θt, vt, θ̇t] at time t contains the 2D position (xt, yt), heading θt, speed vt, and

yaw rate θ̇t. When rolled out within a scenario, at each timestep the planner outputs the next ego state

y
plan
t = f(y

plan
<t ,Y<t,M) based on the past motion of itself and other agents. For simplicity, we will

write the rolled out planner trajectory as Yplan = f(Y,M) where Yplan = [y
plan
1 ,y

plan
2 , . . . ,y

plan
T]

for the remainder of this chapter. Scenario generation perturbs trajectories for all non-ego agents to

best meet an adversarial objective Ladv (e.g. cause a collision with the planner):

min
Y

Ladv(Y,Y
plan), Yplan = f(Y,M). (4.1)

One may optimize a single or small set of “adversaries” in Y explicitly, e.g. through the kinematic

bicycle model parameterization [276, 130, 199]. While this enforces plausible single-agent dynamics,

interactions must be constrained to avoid collisions between non-ego agents and, even then, the

resulting traffic patterns may be unrealistic. We propose to instead learn to model traffic motion

using a neural network and then use it at optimization time (i) to parameterize all trajectories in a

scenario as vectors in the latent space, and (ii) as a prior over scenario plausibility. Next, we describe

this traffic model, followed by the “adversarial” optimization that produces collision scenarios.

CHAPTER 4. LEARNED TRAFFIC MODEL FOR SCENARIO GENERATION 60

Figure 4.2: Test-time architecture of the learned traffic model. To jointly sample future trajectories
for all agents in a scene, past motion and local map context is first processed individually for each
agent. The conditional prior, then outputs a latent distribution at each node that can be sampled and
fed through the autoregressive decoder to predict future agent trajectories.

4.3.1 Modeling “Realism”: Learned Traffic Model

We wish to generate accident-prone scenarios that are assumed to develop over short time periods

(<10 sec) [175]. Therefore, traffic modeling is formulated as future forecasting, which predicts

future trajectories for all agents in a scene based on their past motion. We learn pθ(Y |X,M) to

enable sampling a future scenario Y conditioned on the fixed past X = {Xi}Ni=1 (defined similar to

Y) and the map M. Two properties of the traffic model make it particularly amenable to downstream

optimization: a low-dimensional latent space for efficient optimization, and a prior distribution over

this latent space to determine the plausibility of a given scenario. Inspired by recent work [29, 248],

we design a conditional variational autoencoder (CVAE), shown in Fig. 4.2, that meets these criteria

while learning accurate and scene-consistent joint future predictions. To sample future motions at

test time, a conditional prior and decoder network are used. As detailed next, both are graph neural

networks operating on a fully-connected scene graph of all agents.

Feature Extraction. Context features for each agent in the scene hi = [pi, mi, si] are first extracted

based on: the past trajectory Xi, the map M, a one-hot encoding of the semantic class si, and the

agent’s bounding box length/width bi = (l, w). The past trajectory feature for each agent pi ∈ R64

is encoded from Xi, si, and bi using a multi-layer perceptron (MLP). The map feature mi ∈ 64 is

extracted using a convolutional network from a local rasterized map crop around the agent at the last

step of Xi. The map input contains a binary channel for each semantic layer (e.g. drivable area, lane

divider, etc.).

Conditional Prior. The prior models pθ(Z|X,M) where Z = {zi}Ni=1 is a set of agent latent

vectors. It operates on a fully-connected scene graph with a context feature hi placed at each node.

The prior (along with posterior and decoder explained below) is a graph neural network (GNN) similar

CHAPTER 4. LEARNED TRAFFIC MODEL FOR SCENARIO GENERATION 61

to a scene interaction module [29, 248]. It performs one round of message passing, which involves an

edge network, aggregation function, and update network. Consider a single node i in the scene graph.

First, interaction features are computed for every incoming edge. For an edge from node j → i, the

edge feature is computed using the edge network E as eij = E(hi,hj , T ij) where T ij is the relative

position and heading of agent j in the local frame of agent i. After computing all edge features, they

are aggregated into a single interaction feature ei using maxpooling ei = max(ei1, ei2, . . .). The

update network then gives the output at each node oi = U(hi, ei).

After message passing, the prior outputs parameters of a Gaussian for each agent in the scene,

forming a “distributed” latent representation that captures the variation in possible futures:

pθ(z
i|X,M) = N (µi

θ(X,M), σi
θ(X,M)). (4.2)

Decoder. The deterministic decoder Y = dθ(Z,X,M) operates on the scene graph with both a

sampled latent zi and past context hi at each node. Decoding is performed autoregressively: at

timestep t, one round of message passing resolves interactions before predicting accelerations v̇t, θ̈t
for each agent. Accelerations immediately go through the kinematic bicycle model [130, 199] to

obtain the next state yi
t+1, which updates hi before continuing rollout. The determinism and graph

structure of the decoder encourages scene-consistent future predictions even when agent z’s are

independently sampled. Importantly for latent optimization, the decoder ensures plausible vehicle

dynamics by using the kinematic bicycle model, even if the input Z is unlikely.

Training. Training is performed on pairs of (X,Ygt) using a modified CVAE objective:

Lcvae = Lrecon + wKLLKL + wcollLcoll. (4.3)

To optimize this loss, a posterior network qϕ(Z|Ygt, X,M) is introduced similar to the prior, but

operating jointly on past and future motion. Future trajectory features are extracted separately, while

past features are the same as used in the prior. The full training loss uses trajectory samples from

both the posterior Ypost and prior Yprior:

Lrecon =

N∑
i=1

||Yi
post −Yi

gt||2 (4.4)

LKL = DKL(qϕ(Z|Ygt, X,M)||pθ(Z|X,M)) (4.5)

Lcoll = Lagent + Lenv (4.6)

CHAPTER 4. LEARNED TRAFFIC MODEL FOR SCENARIO GENERATION 62

where Yi
post ∈ Ypost, Yi

gt ∈ Ygt, and DKL is the KL divergence. Collision penalties Lagent and Lenv

use a differentiable approximation of collision detection to penalize Yprior for collisions between

agents or with the non-drivable map area. Lagent was introduced in TrafficSim [248] and penalizes

vehicle-vehicle collisions by representing all N vehicles by disks. We estimate each agent vehicle i

by 5 disks with radius ri and compute the loss by summing over all pairs of agents (i, j) over time as:

Lagent =
1

N2

∑
(i,j),i ̸=j

T∑
t=1

Lpair(y
i
t,y

j
t) (4.7)

Lpair(y
i
t,y

j
t) =

1− d

ri + rj
, d ≤ ri + rj

0, otherwise
(4.8)

where d is the minimum distance over all pairs of disks representing agents i and j.

Lenv uses a similar idea to penalize collisions with the non-drivable area. At each step of rollout,

collisions are detected between the ego vehicle and the non-drivable area, and a collision point c is

determined as the mean of all vehicle pixels that overlap with non-drivable area. The loss is then

calculated as:

Lenv =
1

T

T∑
t=1

Ldrivable(yt,M) (4.9)

Ldrivable(yt,M) =

1− d

dmax
, if partial collision

0, otherwise
(4.10)

where d is the distance between the vehicle position (center of bounding box) and collision point

c, and dmax is half the ego bounding box diagonal. Note the loss is only applied if there is a partial

collision, i.e. only part of the bounding box overlaps with the non-drivable area – this is because if

the vehicle is completely embedded in the non-drivable area, the loss will not give a useful gradient.

4.3.2 Adversarial Optimization

To leverage the learned traffic model, the real-world scenario used to initialize optimization is split

into the past X and future Yinit. Throughout optimization, past trajectories in X (including that of

the planner) are fixed while the future is perturbed to cause a collision with the given planner f . This

perturbation is done in the learned latent space of the traffic model – as described below, we optimize

CHAPTER 4. LEARNED TRAFFIC MODEL FOR SCENARIO GENERATION 63

Figure 4.3: At each step of adversarial optimization, latent representations of both the planner and
non-ego agents are decoded with the learned decoder and non-ego trajectories are given to the planner
for rollout within the scenario. Finally, losses are computed.

the set of latents for all N non-ego agents Z = {zi}Ni=1 along with a latent representation of the

planner zplan.

Latent scenario parameterization encourages plausibility in two ways. First, since the decoder is

trained on real-world data, it will output realistic traffic patterns if Z stays near the learned manifold.

Second, the learned prior network gives a distribution over latents, which is used to penalize unlikely

Z. This strong prior on behavioral plausibility enables jointly optimizing all agents in the scene

rather than choosing a small set of specific adversaries in advance.

At each step of optimization (Fig. 4.3), the perturbed scenario is decoded with dθ(Z, z
plan, X,M)

and non-ego trajectories Y are passed to the (black-box) planner, which rolls out the ego motion

before losses can be computed. Adversarial optimization seeks two simultaneous objectives:

1. Match Planner. Although optimization has no direct control over the planner’s behavior – an

external function that is queried only when required – it is still necessary to represent the planner

within the traffic model (i.e. include it in the scene graph with an associated latent zplan) so that

interactions with other agents are realistic. In doing this, future predictions from the decoder

include an estimate of the planner trajectory Ŷplan that, ideally, is close to the true planner trajectory

Yplan = f(Y,M). Note that this gives a differentiable approximation of the planner, enabling typical

gradient-based optimization to be used for the second objective described below. To encourage

CHAPTER 4. LEARNED TRAFFIC MODEL FOR SCENARIO GENERATION 64

matching the real planner output with this “internal” approximation, we use

min
zplan

||Ŷplan −Yplan||2 − α log pθ(z
plan|X,M) (4.11)

where the right term lightly regularizes zplan to stay likely under the learned prior and α balances the

two terms.

2. Collide with Planner. The goal for non-ego agents is to cause the planner to collide with another

vehicle:

min
Z

Ladv + Lprior + Linit + Lcoll. (4.12)

The adversarial term encourages a collision by minimizing the positional distance between controlled

agents and the current traffic model approximation of the planner:

Ladv =
N∑
i=1

T∑
t=1

δit · ||yi
t − ŷ

plan
t ||2 (4.13)

δit =
exp(−||yi

t − ŷ
plan
t ||)∑

j

∑
t exp(−||yj

t − ŷ
plan
t ||)

(4.14)

where yt here only includes the 2D position. Intuitively, the δit coefficients defined by the softmin

in Eq. (4.14) are finding a candidate agent and timestep to collide with the planner. The agent with

the largest δit is the most likely “adversary” based on distance, and Eq. (4.13) prioritizes causing a

collision between this adversary and the planner while still allowing gradients to reach other agents.

This weighting helps Lprior to avoid all agents unrealistically colliding with the planner.

The prior term encourages latents to stay likely under the learned prior network:

Lprior = − 1

N

N∑
i=1

γi · log pθ(zi|X,M) (4.15)

γi = 1−
∑
t

δit. (4.16)

The γi coefficient will weight likely adversaries near zero, i.e. agents close to colliding with the

planner are allowed to deviate from the learned traffic manifold to exhibit rare and challenging

behavior. Because the traffic model training data does not contain collisions, we found it difficult

for an agent to collide with the planner using a large prior loss, thus motivating the weighting in

Eq. (4.16). Note that even when γi is small, agents will maintain physical plausibility since the

CHAPTER 4. LEARNED TRAFFIC MODEL FOR SCENARIO GENERATION 65

decoder uses the kinematic bicycle model.

Linit encourages staying close to the initialization in latent space, since it is already known to be

realistic:

Linit =
1

N

N∑
i=1

γi · ||zi − ziinit||2 (4.17)

where ziinit ∈ Zinit are the latents that initialize optimization. Finally, similar to CVAE training, Lcoll

discourages non-ego agents from colliding with each other and the non-drivable area. In practice, all

loss terms are balanced by manual inspection of a small set of generated scenarios.

Initialization and Optimization. Given a real-world scene, Zinit is obtained through the posterior

network qϕ, then further refined with an initialization optimization that fits to the input future

trajectories of all agents (similar to Eq. (4.11)), including the initial planner rollout. Optimization is

implemented in PyTorch[186] using ADAM[121] with a learning rate of 0.05. Runtime depends on

the planner and number of agents; for our rule-based planner (see Sec. 4.4.2), a 10-agent scenario

takes 6-7 minutes.

4.4 Analyzing and Using Generated Scenarios

4.4.1 Filtering and Collision Classification

Solution Optimization. Adversarial optimization produces plausible scenarios, but it cannot guar-

antee they are solvable and useful: e.g. a scenario in which the ego is squeezed by multiple cars

produces an unavoidable collision and is therefore uninformative for evaluating or improving a

planner. Therefore, we perform an additional optimization to identify an ego trajectory that avoids

collision; if this optimization fails, the scenario is discarded for downstream tasks. This solution

optimization is initialized from the output of the adversarial optimization and essentially inverts the

objectives described in Sec. 4.3.2: non-ego latent Z are tuned to maintain the adversarial trajectories

while zplan is optimized to avoid collisions and stay likely under the prior.

Clustering and Labeling. To gain insight into the distribution of collision scenarios and inform their

downstream use, we propose a simple approach to cluster and label them. Specifically, scenarios

are characterized by the explicit relationship between the planner and adversary at the time of

collision: the relative direction and heading of the adversary are computed in the frame of the planner

and concatenated to form a collision feature for each scenario. These features are clustered with

CHAPTER 4. LEARNED TRAFFIC MODEL FOR SCENARIO GENERATION 66

k-means to form semantically similar groups of accidents that are labeled by visual inspection. Their

distribution can then be visualized as in Fig. 4.6.

4.4.2 Improving the Planner

With a large set of labeled collision scenarios, the planner can be improved in two main ways.

First, discrete improvements to functionality may be needed if many scenarios of the same type are

generated. For example, a planner that strictly follows lanes is subject to collisions from head on or

behind as it fails to swerve, indicating necessary new functionality to leave the lane graph. Second,

scenarios provide data for tuning hyperparameters or learned parameters.

Rule-based Planner. To demonstrate how STRIVE scenarios are used for these kinds of improve-

ments, we introduce a simple, yet competent, rule-based planner that we use as a proxy for a

real-world planner. Our planner is ideal for evaluating STRIVE as it is easily interpretable, uses

a small set of hyperparameters, and has known failure modes. It relies entirely on the lane graph

to both predict future trajectories of non-ego vehicles and generate candidate trajectories for the

ego vehicle. Among these candidates, it chooses that which covers the most distance with a low

“probability of collision.” In more detail, the planner has the following structure:

1. Extract from the lane graph a finite set of splines that each vehicle might follow.

2. Generate predictions for the future motion of non-ego vehicles along each of the splines from

(1).

3. Generate candidate trajectories for the ego vehicle and use the predictions from (2) to estimate

the “probability of collision” pcol(τ) for each candidate τ .

4. Among trajectories that are unlikely to collide {τ | pcol(τ) < pmax}, choose the trajectory that

covers the most distance. If no trajectories are unlikely to collide, choose the trajectory that is

least likely to collide.

5. Repeat every ∆t seconds.

Note the “intent” of the planner is deterministic, i.e. it will always follow the same lane graph path

(e.g. choosing whether to turn left or right) when rollout starts from the same initialization. Planner

behavior is affected by hyperparameters such as how pcol(τ) is computed, pmax, and the maximum

speed and forward acceleration. This planner has the additional limitation that it cannot change lanes,

which scenarios generated by STRIVE exposes in Sec. 4.5.3.

CHAPTER 4. LEARNED TRAFFIC MODEL FOR SCENARIO GENERATION 67

4.5 Experiments

We next highlight the new capabilities that STRIVE enables. Sec. 4.5.1 demonstrates the ability to

generate challenging and useful scenarios on two different planners; these scenarios contain a diverse

set of collisions, as shown through analysis in Sec. 4.5.2. Generated scenarios are used to improve

our rule-based planner in Sec. 4.5.3.

Dataset. The nuScenes dataset [26] is used both to train the traffic model and to initialize adversarial

optimization. It contains 20s traffic clips annotated at 2 Hz, which we split into 8s scenarios. Only

car and truck vehicles are used and the traffic model operates on the rasterized drivable area, carpark

area, road divider, and lane divider map layers. We use the splits and settings of the nuScenes

prediction challenge which is 2s (4 steps) of past motion to predict 6s (12 steps) of future, meaning

collision scenarios are 8s long, but only the future 6s trajectories are optimized.

Planners. Scenario generation is evaluated on two different planners. The Replay planner simply

plays back the ground truth ego trajectory from nuScenes data. This is an open-loop setting where

the planner’s 6s future is fully rolled out without re-planning. The Rule-based planner, described in

Sec. 4.4.2, allows a more realistic closed-loop setting where the planner reacts to the surrounding

agents during future rollout by re-planning at 5 Hz.

Metrics. The collision rate is the fraction of optimized initial scenarios from nuScenes that succeed

in causing a planner collision, which indicates the sample efficiency of scenario generation. Solution
rate is the fraction of these colliding scenarios for which a solution was found, which measures how

often scenarios are useful. Acceleration indicates how comfortable a driven trajectory is; challenging

scenarios should generally increase acceleration for the planner, while the adversary’s acceleration

should be reasonably low to maintain plausibility. If a scenario contains a collision, acceleration

(and other trajectory metrics) is only calculated up to the time of collision. Collision velocity is the

relative speed between the planner and adversary at the time of collision; it points to the severity of a

collision.

4.5.1 Scenario Generation Evaluation

First, we demonstrate that STRIVE generates challenging, yet solvable, scenarios causing planners

to collide and drive uncomfortably. Moreover, compared to an alternative generation approach that

does not leverage the learned traffic prior, STRIVE scenarios are more plausible. Scenario generation

is initialized from 1200 8s sequences from nuScenes. Before adversarial optimization, scenes are

pre-filtered heuristically by how likely they are to produce a useful collision, leaving <500 scenarios

CHAPTER 4. LEARNED TRAFFIC MODEL FOR SCENARIO GENERATION 68

Figure 4.4: Qualitative results on the Rule-based planner. Adversarial and solution optimization
results are shown. STRIVE produces diverse collision scenarios including lane changes, (u-)turning
in front of the planner, and pulling into oncoming traffic.

to optimize.

Planner-Specific Scenarios. Tab. 4.1 shows that compared to rolling out a given planner on “regular”

(unmodified) nuScenes scenarios, challenging scenarios from STRIVE produce more collisions and

less comfortable driving. For the Rule-based planner, metrics on challenging scenarios are compared

to the corresponding set of regular scenarios from which they originated (regular scenarios for Replay

are omitted since nuScenes data contains no collisions and, by definition, planner behavior does not

change).

Collision and solution rates indicate that generated scenarios are accident-prone and useful

(solvable). For the Rule-based planner, adversarial optimization causes collisions in 27.4% of

scenarios compared to only 1.2% in the regular scenarios. Generated scenarios also contain more

severe collisions in terms of velocity, and elicit larger accelerations, i.e. less comfortable driving.

The position and angle errors between approximate (Ŷplan) and true (Yplan) planner trajectories at

CHAPTER 4. LEARNED TRAFFIC MODEL FOR SCENARIO GENERATION 69

Planner Trajectory Match Planner Err
Planner Scenarios Collision (%) Solution (%) Accel (m/s2) Coll Vel (m/s) Pos (m) Ang (deg)

Replay Challenging 43.7 (+43.7) 82.4 0.85 7.82 0.28 1.32

Rule-based Regular 1.2 – 1.63 8.48 – –
Rule-based Challenging 27.4 (+26.2) 86.8 1.91 (+0.28) 9.65 (+1.17) 1.23 3.79

Table 4.1: Evaluation of generated challenging scenarios. Generated scenarios contain far more
collisions compared to the corresponding regular (unmodified) scenes, as well as higher acceleration
and collision speeds. Acceleration is measured in the forward direction (i.e. change in speed), since
the Rule-based planner cannot change lanes. Rightmost columns show small errors between Ŷplan

and Yplan.

Plausibility of Adversary Trajectory ↓ Usefulness ↑
Scenarios Accel (m/s2) Env Coll (%) NN Dist (m) NLL Solution (%)

Bicycle 2.00 16.5 0.97 962.9 73.4
STRIVE 0.98 10.8 0.72 323.4 83.5

Table 4.2: Scenario generation for Replay planner compared to the Bicycle baseline, which does not
leverage a learned traffic model.

the end of adversarial optimization are shown on the right (see Sec. 4.3.2). The largest position error

of 1.23m is reasonable relative to the 4.084m length of the planner vehicle. Qualitative results for

the Rule-based planner visualize 2D waypoint trajectories (Fig. 4.4); though not shown, STRIVE

also generates speed and heading.

Baseline Comparison. STRIVE is next compared to a baseline approach to demonstrate that

leveraging a learned traffic model is key to realistic and useful scenarios. Previous works are not

directly comparable as they focus on small-scale scenario generation (e.g. [1, 33]) and/or attack the

full AV stack rather than just the planner [276, 179]. Therefore, in the spirit of AdvSim [276] we

implement the Bicycle baseline, which explicitly optimizes the kinematic bicycle model parameters

(acceleration profile) of a single pre-chosen adversary in the scenario to cause a collision. Rather than

using the learned traffic model, it relies on the bicycle model, collision penalties, and acceleration

regularization to maintain plausibility. This precludes using the differentiable planner approximation

from the traffic model, thus requiring gradient estimation (e.g. finite differences) for the closed-loop

setting, which we found is ≈ 40× slower and requires several hours to generate a single scenario.

Therefore, comparison is done only on the Replay planner.

Tab. 4.2 shows that scenarios generated by Bicycle exhibit more unrealistic adversarial driving,

and are more difficult to find a solution for. All metrics are reported only for scenarios where both

CHAPTER 4. LEARNED TRAFFIC MODEL FOR SCENARIO GENERATION 70

Figure 4.5: Qualitative comparison of generated scenarios for the Replay planner. Bicycle often
produces semantically unrealistic trajectories as no learned traffic model is leveraged.

methods successfully caused a collision. In addition to higher accelerations, the Bicycle adversary

collides with the non-drivable area more often (Env Coll), and exhibits less typical trajectories as

measured by the distance to the nearest-neighbor ego trajectory in the nuScenes training split (NN

Dist). After fitting the Bicycle-generated scenarios with our traffic model, we see the adversary’s

behavior is also less realistic as measured by the negative log-likelihood (NLL) of its latent z under

the learned prior. These observations are supported qualitatively in Fig. 4.5.

4.5.2 Analyzing Generated Scenarios

Before improving a given planner, the analysis from Sec. 4.4.1 is used to identify useful scenarios by

filtering out unsolvable scenarios and classifying collision types. For classification, collision features

are clustered with k = 10 and clusters are visualized to manually assign the semantic labels shown

in Fig. 4.6. The distribution of generated collision scenarios for both planners in Sec. 4.5.1 is shown

in Fig. 4.6(a). STRIVE generates a diverse set of scenarios with solvable scenes found in all clusters.

CHAPTER 4. LEARNED TRAFFIC MODEL FOR SCENARIO GENERATION 71

Figure 4.6: (Bottom) Collision types are depicted; the arrow indicates the position/direction of the
adversary. (a) Distribution of generated scenarios for both planners. (b) Scenarios used to tune the
multi-mode oracle planner. Scenarios where all parameter settings cause a collision are in red. A
majority of Head On, Front from Right, and Behind scenarios always fail due to the inability to
change lanes.

“Head On” is the most frequently generated scenario type, likely because Replay is non-reactive and

Rule-based cannot change lanes. “Behind” exhibits the highest rate of unsolvable scenarios since

being hit from behind is often the result of a negligent following vehicle, rather than undesirable

planner behavior. Replay is much more susceptible to being cut off since it is open-loop, while the

closed-loop Rule-based can successfully react to avoid such collisions.

4.5.3 Improving Rule-Based Planner

Now that we have a large set of labeled collision scenarios, in addition to the original nuScenes

data containing “regular” scenarios (with few collisions), we can improve the Rule-based planner

to be better prepared for challenging situations. Besides uncovering fundamental flaws that lead us

to add new functionality, improvement is based on hyperparameter tuning via a grid search over

possible settings. For each set of hyperparameters, the planner is rolled out within all scenarios of a

dataset, and the optimal tuning is chosen based on the minimum collision rate. Tuning searches over

pmax in the range of [0.05, 0.2], max speeds in the range [12.5, 20.0]m/s, max accelerations in the

range [3.0, 4.5]m/s2, and parameters related to computing pcol(τ). In total, tuning sweeps over 432

hyperparameter combinations.

The planner is first tuned on regular scenarios before adversarial optimization is performed to

create a set of challenging scenarios to guide further improvements. Performance of this initial

regular-tuned planner on held out regular (Reg) and collision (Coll) scenarios is shown in the top

CHAPTER 4. LEARNED TRAFFIC MODEL FOR SCENARIO GENERATION 72

Collision (%) Coll Vel (m/s) Accel (m/s2)
Improvement Reg / Coll Reg / Coll Reg / Coll

None (regular-tuned) 4.6 / 68.6 4.59 / 10.48 1.96 / 2.26
+ Challenging data 6.0 / 51.4 5.48 / 13.88 2.29 / 2.50
+ Extra learned mode 4.6 / 54.3 4.60 / 10.86 2.02 / 2.55

+ Extra oracle mode 4.6 / 54.3 4.59 / 10.40 1.96 / 2.39

Table 4.3: Improving Rule-Based planner. Including challenging tuning data and adding an extra
“mode” improves performance on collision scenarios (Coll) while maintaining performance in regular
scenarios (Reg). Acceleration is in the forward direction.

row of Tab. 4.3. Before any improvements, the planner collides in 68.6% of challenging and 4.6% of

regular scenarios. Note that avoiding collisions altogether on regular scenarios is not possible: even

if we choose optimal hyperparameters for each scenario separately, the collision rate is still 3.2%.

Tuning on Challenging Scenes. The first improvement, shown in the second row of Tab. 4.3, is to

naı̈vely combine regular and challenging scenarios for tuning. Combined tuning greatly reduces the

collision rate on challenging scenarios, but negatively impacts performance on regular driving. This

points to a first fundamental issue: the planner uses a single set of hyperparameters for all driving

situations, causing it to drive too aggressively in regular scenarios when tuned on challenging ones.

Multi-Mode Operation. To address this, we add a second set of parameters such that the planner

has one for regular and one for accident-prone situations. Using this second “accident mode” of

operation requires a binary classification of the current scene during rollout. For this, we augment

the planner with a learned component that decides which parameter set to use based on a moving

window of the past 2s of traffic; it is trained on scenarios generated by STRIVE. The extra parameter

set is tuned on collision scenarios only. As shown in the third row of Tab. 4.3, this learned extra mode

reduces the collision rate on challenging scenarios by 14.3% compared to the vanilla planner without

hindering performance on regular scenes. We compare it to an oracle version (bottom row) that

automatically switches into accident mode 2s before a collision is supposed to happen on generated

scenarios, showing the learned version is achieving near-optimal performance.

Lane Change Limitation. The inability of the planner to switch lanes is another fundamental

issue exposed by collision scenarios. Fig. 4.6(b) shows the distribution of tuning scenarios for the

oracle multi-mode version; red bars indicate “impossible” scenarios where all sets of evaluated

hyperparameters collide. A majority of “Head On” and “Behind” scenarios are impossible, pointing

out the lane change limitation. Adversarial optimization has indeed exploited the flaw and the

CHAPTER 4. LEARNED TRAFFIC MODEL FOR SCENARIO GENERATION 73

proposed analysis made it visible.

4.5.4 Traffic Model Prediction Evaluation

Though our learned traffic model was designed primarily for controllability and plausibility to create

scenarios, for completeness we evaluate its prediction abilities compared to state-of-the-art baselines

and when key components are ablated. We evaluate on the test split of the nuScenes [26] prediction

challenge using 2s (4 steps) of past motion to predict 6s (12 steps) of future. This data contains

vehicles from the bus, car, truck, construction, and emergency categories.

Evaluation is done with standard future prediction metrics including minimum average displace-

ment error (ADE) and minimum final displacement error (FDE), which are measured over K samples

from the traffic model. For a single agent being evaluated, these metrics are

ADE = min
k

1

T

T∑
t=1

||ŷ(k)
t − yt||2 (4.18)

FDE = min
k

||ŷ(k)
T − yT ||2 (4.19)

where ŷ(k)
t is the predicted position of the agent in the kth sample at time t and yt is the ground truth.

In our experiments, we use K = 10 samples.

For the ablation study, we also measure the environment and vehicle collision rates. Environ-

ment collision rate is the fraction of predicted future trajectories where more than 5% of the vehicle

bounding box overlaps with the non-drivable area. This is measured over all K samples. The vehicle

collision rate is measured over all agents in each scene (rather than only the single one specified at

each data point in the prediction challenge test split) and all K samples. It is the same as used in

TrafficSim [248], which counts the number of agents in collision (i.e. have a bounding box overlap

more than IoU 0.02 with another agent).

Baseline Comparison. Prediction performance is compared to reported results for recent state-of-the

art models AgentFormer [298], Trajectron++ [228], DLow-AF [295], and LDS-AF [161]. Results

are shown in Tab. 4.4. Our full model is trained only on car and truck vehicles to be used for

scenario generation, so to evaluate on the prediction challenge test split, we modify the category

of input vehicles to our model to be one of these (e.g. bus → truck). Our learned traffic model

makes accurate predictions and is competitive with current SOTA methods as shown in Tab. 4.4.

We also train an ablation of our model that does not use the kinematic bicycle model, instead the

decoder directly predicts output position and headings. This version is trained on all categories in the

CHAPTER 4. LEARNED TRAFFIC MODEL FOR SCENARIO GENERATION 74

Model ADE (m) ↓ FDE (m) ↓

LDS-AF [161] 1.66 3.58
DLow-AF [295] 1.78 3.77
Trajectron++ [228] 1.51 -
AgentFormer [298] 1.45 2.86

Ours, Full 1.75 3.57
Ours, No Bicycle 1.60 3.17

Table 4.4: Learned traffic model future prediction accuracy on all nuScenes prediction categories
compared to current state of art. ADE/FDE is reported using 10 samples.

Model ADE (m) FDE (m) Env Coll (%) Veh Coll (%)

Full 1.74 3.54 10.6 5.6
No Bicycle 1.72 3.45 7.2 3.7
No Lenv 1.91 3.92 13.2 5.0
No Autoregress 3.68 8.00 16.2 5.4

Table 4.5: Traffic model ablation study on cars and truck nuScenes categories only (same as used
for scenario generation). Though not using the bicycle model gives better performance, it gives less
realistic single-agent vehicle dynamics which is very undesirable for scenario generation.

challenge dataset, and makes more accurate predictions according to ADE/FDE. Note, however, that

using the bicycle model is very important for adversarial and solution optimization to ensure output

trajectories have reasonable dynamics even when the optimized Z is off-manifold.

Ablation Study. To evaluate key design differences from TrafficSim [248] and ILVM [29], which

our model is based on, we ablate various components of our traffic model design. Results are shown

in Tab. 4.5, where all models are trained and evaluated only on the car and truck categories, since

this is what is used for scenario generation. No Bicycle directly predicts the position and heading

from the decoder rather than acceleration profiles that go through the kinematic bicycle model; again,

this gives slightly improved performance but less realistic per-agent dynamics. No Lenv only uses

vehicle collision penalties while training, similar to prior work [248]. Removing the environment

collision penalty results in a higher collision rate and lower predictive accuracy. No Autoregress uses

a GNN decoder that predicts the entire future trajectory in one shot rather than as an autoregressive

rollout. This makes the future prediction task more difficult, substantially reducing accuracy.

4.6 Discussion

STRIVE enables the automatic and scalable generation of plausible, accident-prone scenarios to

CHAPTER 4. LEARNED TRAFFIC MODEL FOR SCENARIO GENERATION 75

Figure 4.7: Generated scenarios for the Replay planner using a traffic model trained on all categories.
Top row shows the initial scene and bottom is the output of adversarial optimization. When choosing
the adversary ahead of time, STRIVE can cause collisions with both pedestrians (left) and cyclists
(right).

improve a given planner. It does this based on a generative motion model of 2D vehicle trajectories

that had to address several of the challenges outlined in Sec. 1.1.1. Accuracy and diversity was

achieved by adapting a state-of-the-art CVAE model for trajectory synthesis. Moreover, this model

was explicitly aware of interactions between agents by leveraging a graph structure and message

passing layers. Finally, the latent space of this CVAE allowed for controllability through optimization

to create both accident and solution scenarios.

Limitations and Future Work. Our method assumes perfect perception and only attacks the planner,

but using our traffic model to additionally attack detection and tracking is of great interest. Other kinds

of adversaries like adding/removing assets and changing map topology will also uncover additional

AV weaknesses. Finally, STRIVE generates scenarios from existing data and only considers collisions

between vehicles, but other incidents involving pedestrians and cyclists are also important. As a

proof-of-concept for this, we train the learned traffic model on all categories in the nuScenes dataset

and generate scenarios for the Replay planner where the adversary is a pedestrian or cyclist. As

shown in Fig. 4.7, STRIVE gives promising results towards this direction.

Fig. 4.8 shows examples of other STRIVE limitations. First, our proposed solution optimization

is iterative and operates on the full temporal planner trajectory, therefore it has access to future

information that sometimes allows performing evasive maneuvers even before an “attack” is apparent.

An example is in Fig. 4.8(a) where the optimized solution simply does not not pull into the roundabout

CHAPTER 4. LEARNED TRAFFIC MODEL FOR SCENARIO GENERATION 76

Figure 4.8: Example failure cases of STRIVE. (a) The solution optimization has access to privileged
information, sometimes resulting in unrealistic “solutions”. (b) Adversaries sometimes drive on
non-drivable area to cause a collisions. (c) Attacks that require unlikely motion under the learned
prior (e.g. a parked car pulling out) can be difficult to produce.

where the collision occurs. Fig. 4.8(b) shows that the adversary sometimes crosses non-drivable

areas in order to collide with the planner. Though this scenario is technically possible, it is extreme

behavior that may not be desired. However, these situations can be easily detected and discarded, and

usually occur only when there is no other feasible adversary near the planner. Finally, adversarial

optimization can have difficulty exhibiting behavior that is very unlikely under the prior even when it

is realistic, e.g. a parked car pulling out as shown in Fig. 4.8(c), since these motions are rare in the

traffic model training data.

Our method is intended to make AVs safer by exposing them to challenging and rare scenarios

similar to the real world. However, our experiments expose the difficulty of properly balancing

regular and challenging data when tuning a planner. Care must be taken to integrate generated

scenarios into AV testing and to design unified planners that robustly address highly variable driving

conditions.

Chapter 5

Controllable Trajectory Generation

In Chapter 4, we saw that generative CVAE motion models allow for detailed control of vehicle

trajectories using optimization in the learned latent space. This controllability enabled creating

specific traffic scenarios, such as causing accidents. In principle, though, the idea is applicable to

any kind of desired controllability on vehicle or pedestrian trajectories. Since the optimization is

done in a learned latent space using a data-driven prior as regularization, controlled trajectories are

also encouraged to remain plausible. Though promising, this test-time optimization approach can

be costly, requiring several minutes to modify trajectories for complex objectives. Moreover, the

optimization process finds a single local minimum corresponding to a single output scenario; it is not

able to generate a variety of different scenarios when starting from the same initialization.

In this chapter, we will introduce TRACE, which looks to address these shortcomings using

recent advancements in diffusion modeling. By adapting diffusion models to conditionally generate

pedestrian trajectories, we can guide trajectories as part of the usual denoising process to meet

user objectives, while getting a diversity of samples. This work was originally published in CVPR

2023 [209]; although TRACE is connected to a character controller to enable full-body character

animation, my primary contribution to this project was the guided trajectory diffusion model itself.

5.1 Introduction

Synthesizing high-level human behavior, in the form of 2D positional trajectories, is at the core of

modeling pedestrians for applications like autonomous vehicles and architectural and environmental

design. An important feature of such synthesis is controllability – generating trajectories that meet

user-defined objectives, edits, or constraints. For example, a user may place specific waypoints

77

CHAPTER 5. CONTROLLABLE TRAJECTORY GENERATION 78

Figure 5.1: (Left) We propose TRACE, a trajectory diffusion model that enables user control through
test-time guidance. (Right) Generated trajectories are passed to a novel physics-based humanoid
controller (PACER), forming a closed-loop pedestrian animation system.

for characters to walk through, specify social groups for pedestrians to travel in, or define a social

distance to maintain.

Attaining controllability is straightforward for algorithmic or rule-based models of human behav-

ior. They have built-in objectives by construction. In the simplest case, human trajectories can be

determined by the shortest paths between control points [92], but more sophisticated heuristics have

also been developed for pedestrians [97, 13], crowds [212, 119], and traffic [253, 156]. Unfortunately,

algorithmically generated trajectories often appear unnatural. Learning-based approaches, on the

other hand, can improve naturalness by mimicking real-world data. These methods often focus on

short-term trajectory prediction using a single forward pass of a neural network [86, 298, 228, 4].

However, the ability to control these models is limited to sampling from an output trajectory dis-

tribution [166, 284] or using an expensive latent space traversal [210] procedure. As a result,

learning-based methods often predict motions that are implausible, containing collisions with ob-

stacles or between pedestrians. This motivates another notion of controllability – ensuring physical

plausibility of trajectories during agent-agent and agent-environment interactions.

In this work, we are particularly interested in using controllable pedestrian trajectory models

for character animation. We envision a simple interface where a user provides high-level objectives,

such as waypoints and social groups, and a system converts them to physics-based full-body human

motion. Compared to existing kinematic motion models [201, 103, 147], physics-based methods

have the potential to produce high-quality motion with realistic subtle behaviors during transitions,

obstacle avoidance, traversing uneven terrains, etc.. Although there exist physics-based animation

models [193, 95, 196, 194, 147, 281], controlling their behavior requires using task-specific planners

that need to be re-trained for new tasks, terrains, and character body shapes.

We develop a generative model of trajectories that is data driven, controllable, and tightly

integrated with a physics-based animation system for full-body pedestrian simulation (Fig. 5.1). Our

CHAPTER 5. CONTROLLABLE TRAJECTORY GENERATION 79

method enables us to generate pedestrian trajectories that are realistic and amenable to meeting

user-defined objectives at test time. We integrate this trajectory generator as a high-level planner for

a physics-based pedestrian controller, resulting in a closed-loop controllable pedestrian animation

system.

For trajectory generation, we introduce a TRAjectory Diffusion Model for Controllable PEdestrians

(TRACE). Inspired by recent successes in trajectory generation through denoising [81, 110, 314],

TRACE generates the future trajectory for each pedestrian in a scene and accounts for the surrounding

context through a spatial grid of learned map features that is queried locally during denoising. We

leverage classifier-free sampling [101] to allow training on mixed annotations (e.g., with and without

a semantic map), which improves controllability at test time by trading off sample diversity and

compliance to conditioning. User-controlled sampling from TRACE is achieved through test-time

guidance [54, 101, 102], which perturbs the output at each step of denoising toward the desired

objective. We extend prior work [110] by introducing several analytical loss functions for pedestrians

and re-formulating trajectory guidance to operate on clean trajectory outputs from the model [102],

improving sample quality and adherence to user objectives.

For character animation, we develop a general-purpose Pedestrian Animation ControllER
(PACER) capable of driving physics-simulated humanoids with diverse body types to follow trajecto-

ries from a high-level planner. We focus on (1) motion quality: PACER learns from a small motion

database to create natural and realistic locomotion through adversarial motion learning [196, 194];

(2) terrain and social awareness: by learning in diverse terrains with other humanoids, PACER learns

to move through stairs, slopes, uneven surfaces, and to avoid obstacles and other pedestrians; (3)

diverse body shapes: by training on different body types, PACER draws on years of simulation

experience to control a wide range of characters; (4) compatibility with high-level planners: PACER

accepts 2D waypoints and can be a plug-in model for any 2D trajectory planner.

We demonstrate a controllable pedestrian animation system using TRACE as a high-level planner

for PACER, the low-level animator. The planner and controller operate in a closed loop through

frequent re-planning according to simulation results. We deepen their connection by guiding TRACE

with the value function learned during RL training of PACER to improve animation quality in

varying tasks. We evaluate TRACE on synthetic [13] and real-world pedestrian data [192, 140,

26], demonstrating its test-time flexibility to both user-specified and plausibility objectives while

synthesizing realistic motion. Furthermore, we show our animation system is capable and robust

with a variety of tasks, terrains, and characters. In summary, we contribute:

• A diffusion model for pedestrian trajectories that is readily controlled at test time through

CHAPTER 5. CONTROLLABLE TRAJECTORY GENERATION 80

guidance;

• A general-purpose pedestrian animation controller for diverse body types and terrains;

• A pedestrian animation system that tightly integrates the two to drive simulated characters in a

controllable way.

5.2 Related Work

Pedestrian Trajectory Prediction. Modeling high-level pedestrian behavior has been extensively

studied in the context of motion prediction (forecasting). Approaches range from physics and

planning-based [97, 261, 96] to recent learned methods [298, 228, 4, 31, 137]. We refer the reader

to the thorough survey by Rudenko et al. [221] for an overview and focus this discussion on

controllability. Most forecasting works are motivated by planning for autonomous vehicles (AVs)

or social robots [86] rather than controllability or longer-term synthesis. Rule-based models for

pedestrians [13, 212, 119] and vehicle traffic [253, 156] can easily incorporate user constraints [139]

making them amenable to control. However, trajectories from these approaches are not always

human-like; methods have even been developed to choose the best simulation method and tune

parameters to make crowd scenarios more realistic [117].

Data-driven methods produce human-like motions, but neural network-based approaches are

difficult to explicitly control. Some works decompose forecasting into goal prediction followed by

trajectory prediction based on goals [166, 50]. These models offer limited control by selecting goal

locations near a target or that minimizes an objective (e.g. collisions) [284]. Synthesized pedestrian

behavior can also be controlled by strategically choosing a starting location [202]. STRIVE [210]

showed that a VAE trajectory model can be controlled through test-time optimization in the learned

latent space. Reinforcement learning (RL) agents can be controlled in crowd simulations by incorpo-

rating tasks into reward functions for training [136]. By varying the weights of different rewards,

characters can be controlled to exhibit one of several behaviors at test time [183]. Our method,

TRACE, trains to mimic trajectories from data and is agnostic to any task: all controls are defined at

test time, allowing flexibility to new controls after training. Instead of lengthy test-time optimization,

we use guidance for control.

Controllable Character Animation. Full-body pedestrian animation typically involves a high-level

task (e.g. trajectory following, obstacle avoidance) and low-level body control. Some methods

solve both with a single network that implicitly does high-level planning and low-level animation.

CHAPTER 5. CONTROLLABLE TRAJECTORY GENERATION 81

GAMMA [312] trains a kinematic model to go to waypoints, while PFNN [103] follows gamepad

inputs. Physics-based humanoid controllers such as AMP [196] train different models for each task,

limiting their general applicability.

Two-stage methods split the task into separate high-level planning and low-level character control,

where task information is only used by the planner. Planning can be done with traditional A* [92],

using learned trajectory prediction [28], searching in a pre-trained latent space [147, 281, 194], or

using hierarchical RL [95, 193, 194, 201, 281]. DeepLoco [193], Haworth et al. [95], and ASE [194]

utilize hierarchical RL to achieve impressive dynamic control for various tasks. They require lengthy

training for both low-level and high-level controllers and often jointly train as a final step. They must

also train different planners for different tasks.

Our approach follows the two-stage paradigm, with the distinction that both our high-level

(TRACE) and low-level (PACER) models consume task information for pedestrian navigation:

through test-time guidance and map-conditioned path following, respectively. TRACE and PACER

are unaware of each other at training time, yet can be tightly integrated in a closed loop: trace-pace-

retrace.

Diffusion Models and Guidance. Diffusion models have shown success in generating images [100,

176, 260], videos [99], and point clouds [303]. Guidance has been used for test-time control in

several ways: classifier [54] and classifier-free [101] guidance re-inforce input conditioning, while

reconstruction guidance [102] has been used for coherent video generation. Gu et al. [81] adapt the

diffusion framework for short-term pedestrian trajectory forecasting conditioned on past trajectories.

Diffuser [110] generates trajectories for planning and control in robotics applications with test-time

guidance. Closest to ours is the concurrent work of CTG [314], which builds on Diffuser to develop

a controllable vehicle traffic model, focusing on following formalized traffic rules like speed limits.

Our method TRACE contains several key differences: we encode map conditioning into an expressive

feature grid queried in denoising, we use classifier-free sampling to enable multi-dataset training and

test-time flexibility, we re-formulate guidance to operate on clean model outputs, and we link with a

low-level animation model using value function guidance.

5.3 Method

To model high-level pedestrian behavior, we first introduce the controllable trajectory diffusion model

(TRACE). In Sec. 5.3.2, we detail our low-level physics-based pedestrian controller, PACER, and in

Sec. 5.3.3 how they can be combined into an end-to-end animation system.

CHAPTER 5. CONTROLLABLE TRAJECTORY GENERATION 82

5.3.1 Controllable Trajectory Diffusion

Problem Setting. Our goal is to learn high-level pedestrian behavior in a way that can be controlled

at test time. For pedestrian animation, we focus on two types of control: (1) user specification,

e.g., goal waypoints, social distance, and social groups, and (2) physical plausibility, e.g., avoiding

collisions with obstacles or between pedestrians.

We formulate synthesizing pedestrian behavior as an agent-centric trajectory forecasting problem.

At each time step, the model outputs a future trajectory plan for a target ego agent conditioned

on that agent’s past, the past trajectories of all neighboring agents, and the semantic map context.

Formally, at timestep t we want the future state trajectory τs = [st+1 st+2 . . . st+Tf
] over the

next Tf steps where the state s = [x y θ v]T includes 2D position (x, y), heading angle θ, and

speed v. We assume this state trajectory is actually the result of a sequence of actions [314] defined

as τa = [at+1 at+2 . . . at+Tf
] where each action a = [v̇ θ̇]T contains the acceleration v̇

and yaw rate θ̇. The state trajectory can be recovered from the initial state and action trajectory

using a given dynamics model τs = f(st, τa). The full state-action trajectory is then denoted as

τ = [τs; τa]. To predict the future trajectory, the model receives as input the past state trajectory

of the ego pedestrian xego = [st−Tp . . . st] along with the past trajectories of N neighboring

pedestrians Xneigh = {xi}Ni=1. It also gets a crop of the rasterized semantic map M ∈ RH×W×C

in the local frame of the ego pedestrian at time t. These inputs are summarized as the conditioning

context C = {xego, Xneigh,M}.

Our key idea is to train a diffusion model to do this conditional trajectory generation, which

can be guided at test time to enable controllability. For simplicity, the following formulation uses

the full trajectory notation τ , but in practice, the state trajectory is always a result of actions, i.e.,

diffusion/denoising are on τa which determines the state.

Trajectory Diffusion Model

We build on Diffuser [110] and generate trajectories through iterative denoising, which is learned

as the reverse of a pre-defined diffusion process [100, 238]. Starting from a clean future trajectory

τ 0 ∼ q(τ 0) sampled from the data distribution, the forward noising process produces a sequence of

progressively noisier trajectories (τ 1, . . . , τ k, . . . , τK) by adding Gaussian noise at each process

step k:
q(τ 1:K | τ 0) :=

K∏
k=1

q(τ k | τ k−1)

q(τ k | τ k−1) := N (τ k;
√
1− βkτ

k−1, βkI)

(5.1)

CHAPTER 5. CONTROLLABLE TRAJECTORY GENERATION 83

Figure 5.2: Trajectory diffusion model (TRACE). Future trajectory denoising is conditioned on past
and neighbor motion by adding processed features to intermediate U-Net features. Map conditioning
is provided through a feature grid queried along the noisy input trajectory.

where βk is the variance at each step from a fixed schedule, and with large enough K we get

q(τK) ≈ N (τK ;0, I). TRACE learns the reverse of this process so that sampled noise can be

denoised into plausible trajectories. Each step of this reverse process is conditioned on C:

pϕ(τ
k−1 | τ k, C) := N (τ k−1;µϕ(τ

k, k, C),Σk) (5.2)

where ϕ are model parameters and Σk is from a fixed schedule. TRACE learns to parameterize the

mean of the Gaussian distribution at each step of the denoising process.

Training and Classifier-Free Sampling. Importantly for guidance, the network does not directly

output µ. Instead, at every step it learns to predict the final clean trajectory τ 0, which is then used to

compute µ [176]. In particular, we can compute µ from τ k and τ 0 using

µ(τ 0, τ k) :=

√
ᾱk−1βk
1− ᾱk

τ 0 +

√
αk (1− ᾱk−1)

1− ᾱk
τ k (5.3)

where βk is the variance from the schedule, αk := 1− βk, and ᾱk :=
∏k

j=0 αj .

Training supervises the network output τ̂ 0 with ground truth future trajectories (i.e. denoising

score matching [270, 240, 100]):

L = Eϵ,k,τ0,C

[
||τ 0 − τ̂ 0||2

]
(5.4)

where τ 0 and C are sampled from the training dataset, k ∼ U{1, 2, . . . ,K} is the step index, and

ϵ ∼ N (0, I) is used to corrupt τ 0 to give the noisy input trajectory τ k.

CHAPTER 5. CONTROLLABLE TRAJECTORY GENERATION 84

Our training procedure allows the use of classifier-free sampling1 at test time, which has been

shown to improve compliance to conditioning in diffusion models [101]. We simultaneously train

both a conditional model µϕ(τ
k, k, C) and unconditional model µϕ(τ

k, k) by randomly dropping

out conditioning during training. At test time, predictions from both models are combined with

weight w as:

ϵ̃ϕ = ϵϕ(τ
k, k, C) + w

(
ϵϕ(τ

k, k, C)− ϵϕ(τ
k, k)

)
(5.5)

where ϵϕ is the model’s prediction of how much noise was added to the clean trajectory to produce

the input τ k. This is straightforward to compute using [176]:

ϵ =
τ k −

√
ᾱkτ

0

√
1− ᾱk

. (5.6)

Note that w>0 and w<0 increase and decrease the effect of conditioning, respectively, while

w=0 and w=−1 result in the purely conditional or unconditional model, respectively. This flex-

ibility allows a user to trade off respecting conditioning with trajectory diversity, which benefits

controllability (see Sec. 5.4.2). This approach also enables training on multiple distinct datasets with

varying annotations: conditioning is already being dropped out randomly, so it is easy to use mixed

data with subsets of the full conditioning. Since there are pedestrian datasets with diverse motions

but no semantic maps [192, 140] and others with limited motions but detailed maps [26], we find

mixed training is beneficial to boost diversity and controllability (see Sec. 5.4.2).

Architecture. As shown in Fig. 5.2, TRACE uses a U-Net similar to [110] which has proven

effective for trajectories. The input trajectory τk at step k is processed by a sequence of 1D temporal

convolutional blocks that progressively down and upsample the sequence in time, leveraging skip

connections. A key challenge is how to condition the U-Net on C to predict trajectories compliant

with the map and other pedestrians. To incorporate the step k, ego past xego, and neighbor past

Xneigh, we use a common approach [110, 102] that extracts a single conditioning feature and adds it

to the intermediate trajectory features within each convolutional block. We propose encoding M
with a 2D convolutional network into a feature grid where each pixel contains a high-dimensional

feature. At step k of denoising, the 2D position at each timestep t of the current noisy input trajectory

τ k is queried in the map feature grid to obtain a feature gt = Ψ(xt, yt) ∈ R32. This query is done

through bilinear interpolation of map features at the corresponding point. Over all timesteps, these

form a feature trajectory G = [gt+1 . . .gt+Tf
] that is concatenated along the channel dimension

1we refer to it as “sampling” instead of the common term “guidance” to avoid confusion with the guidance introduced
in Sec. 5.3.1

CHAPTER 5. CONTROLLABLE TRAJECTORY GENERATION 85

with τ k ∈ RTf×6 (containing both actions and states) to get the full trajectory input to the denoising

U-Net [τ k;G] ∈ RTf×38. Intuitively, this allows learning a localized representation that can benefit

subtle map interactions such as obstacle avoidance.

Controllability through Clean Guidance

After training TRACE to generate realistic trajectories, controllability is implemented through test-

time guidance. Intuitively, guidance nudges the sampled trajectory at each step of denoising towards

a desired outcome. Let J (τ) be a guidance loss function measuring how much a trajectory τ violates

a user objective. This may be learned [110] or an analytical differentiable function [314]. Guidance

uses the gradient of J to perturb the predicted mean from the model at each denoising step such that

the right side of Eq. (5.2) becomes N (τ k−1; µ̃ϕ(τ
k, k, C),Σk) where µ̃ is the perturbed (guided)

mean. Prior work [110, 314] directly perturbs the noisy network-predicted mean with

µ̃ = µ− αΣk∇µJ (µ) (5.7)

where α determines the guidance strength. Note that Eq. (5.7) evaluates J at the noisy mean, so

learned loss functions must be trained at varying noise levels and analytic loss functions may hit

numerical issues.

To avoid this, we build upon “reconstruction guidance”, which operates on the clean model

prediction τ̂ 0 [102]. We extend the guidance formulation introduced in [102] for temporal video

upsampling to work with arbitrary loss functions. At each denoising step with input τ k, we first

perturb the predicted clean trajectory from the network τ̂ 0 with

τ̃ 0 = τ̂ 0 − αΣk∇τkJ (τ̂ 0), (5.8)

then compute µ̃ in the same way as we would in Eq. (5.2), i.e. as if τ̃ 0 were the output of the

network. Note that the gradient is evaluated wrt the noisy input trajectory τ k rather than the clean τ̂ 0,

requiring backpropagation through the denoising model. We formulate several analytical guidance

objectives like waypoint reaching, obstacle avoidance, collision avoidance, and social groups (see

Sec. 5.4.1, 5.4.2), and show a learned RL value function can also be used in Sec. 5.4.3.

Scene-Level Guidance. Some guidance objectives are based on multi-agent interactions, e.g., agent

collision avoidance and social groups. In this case, we assume that all pedestrians in a scene can be

denoised simultaneously in a batched fashion. At each denoising step, the loss function is evaluated

at the current trajectory prediction of all pedestrians and gradients propagated back to each one for

CHAPTER 5. CONTROLLABLE TRAJECTORY GENERATION 86

Figure 5.3: Pipeline: Pedestrian Animation Controller (PACER).

guidance. This can be seen as sampling a scene-level future rather than a single agent future.

5.3.2 Physics-Based Pedestrian Animation

To enable full-body pedestrian simulation, we design the Pedestrian Animation ControllER (PACER)

to execute the 2D trajectories generated by TRACE in a physics simulator. In our experiments, we

use a similar procedure as [297, 160], to automatically generate humanoid models that conform to

the kinematic structure of SMPL [155].

Background: Goal-Conditioned RL. Our framework (Fig. 5.3) follows the general goal-conditioned

reinforcement learning framework, where a goal-conditioned policy πPACER is trained to follow 2D

target trajectories specified by τs. The task is formulated as a Markov Decision Process (MDP)

defined by a tuple M = ⟨S,A, T , R, γ⟩ of states, actions, transition dynamics, reward function, and

discount factor. The state S , transition dynamics T , and reward R are calculated by the environment

based on the current simulation and goal τs, while the action A is computed by the policy πPACER.

The policy’s objective is to maximize the discounted return E
[∑T

t=1 γ
t−1rt

]
where rt is the per-

timestep reward. We utilize Proximal Policy Optimization (PPO) [229] to find the optimal control

policy πPACER.

Terrain, Social, and Body Awareness. To create a controller that can simulate crowds in realistic

3D scenes (e.g. scans, neural reconstructions, or artist-created meshes (Fig. 5.1)), our humanoid

must be terrain aware, socially aware of other agents, and support diverse body types. Our control

policy is conditioned on the state of the simulated character ht, environmental features ot, body

CHAPTER 5. CONTROLLABLE TRAJECTORY GENERATION 87

type β, and the goal states τs: πPACER(at|ht,ot,β, τs). The policy inputs a rasterized local height

and velocity map of size ot ∈ R64×64×3 to give agents crucial information about their surroundings.

To allow for social awareness, nearby humanoids are represented as a cuboid and rendered on the

global height map at runtime. In this way, each humanoid views other people as dynamic obstacles to

avoid. Obstacle and interpersonal avoidance are learned by using obstacle collision as a termination

condition. By conditioning and training with different body parameters β our policy learns to adapt

to characters with diverse morphologies.

Realistic Motion through Adversarial Learning. To learn the optimal control policy πPACER that

(1) follows a 2D trajectory closely and (2) creates realistic pedestrian motions, we follow Adversarial

Motion Prior (AMP) [196], which uses a motion discriminator to encourage the policy to generate

motions that are similar to the movement patterns contained in a dataset of motion clips recorded

from human actors. The discriminator D(ht,at) is then used to specify a motion style reward r
amp
t

for training the policy. The style reward is combined with a trajectory following reward rτt and an

energy penalty r
energy
t [70] to produce the total reward rt = r

amp
t + rτt + r

energy
t . To mitigate artifacts

arising from asymmetric gaits, such as limping, we utilize the motion-symmetry loss proposed by

[294]:
Lsym(θ) = ∥πPACER(ht,ot,β, τs)− Φa(πPACER(Φs(ht,ot,β, τs)))∥2, (5.9)

where Φs and Φa mirrors the state and action along the character’s sagittal plane. This loss encourages

the policy to produce more symmetric motions, leading to more naturalistic gaits. During training,

random terrains are generated following the procedure used in [222]. We create stairs, slopes, uneven

terrains, and obstacles consisting of random polygons. The morphology of the character is also

randomized by sampling a gender and body type from the AMASS dataset [162]. The policy and

discriminator are then conditioned on the SMPL gender and body shape β parameters.

5.3.3 Controllable Pedestrian Animation System

The high-level trajectory planning from TRACE is combined with the low-level character control

from PACER to create an end-to-end pedestrian animation system. The two components are trained

independently, but at run-time, they operate in a closed feedback loop: PACER follows planned

trajectories for 2s before TRACE re-planning, taking past character motion from PACER as input.

By combining terrain and social awareness of PACER with collision avoidance guidance, both high

and low level systems are task-aware and work in tandem to prevent collisions and falls.

CHAPTER 5. CONTROLLABLE TRAJECTORY GENERATION 88

Value Function as Guidance. To enable tighter two-way coupling between TRACE and PACER,

in Sec. 5.4.3 we explore using the value function learned during RL training of PACER to guide

trajectory diffusion. The value function predicts expected future rewards and is aware of body pose

and surrounding terrain and agents. Using the value function to guide denoising encourages TRACE

to produce trajectories that are easier to follow and better suited to the current terrain (which TRACE

is unaware of otherwise). Unlike Diffuser [110], which requires training a reward function with

samples from the diffusion model at varying noise levels, our guidance (Eq. (5.8)) operates on clean

trajectories so we can use the value function directly from RL training.

5.4 Experiments

We first demonstrate the controllability of TRACE when trained on synthetic (Sec. 5.4.1) and real-

world (Sec. 5.4.2) pedestrian data. Sec. 5.4.3 evaluates our full animation system on several tasks

and terrains.

Implementation Details. TRACE is trained to predict Tf=5s of future motion at 10 Hz from Tp=3s

of past motion, and uses K=100 diffusion steps. During training, map and neighbor conditioning

inputs are independently dropped with 10% probability. At test time, we sample (and guide) multiple

future trajectories for each pedestrian in a scene and choose one with the lowest guidance loss, which

we refer to as filtering. For PACER, we randomly sample terrain, body type, and procedural 2D

trajectories during training and used a motion dataset consisting of locomotion sequences from

AMASS [162]. All physics simulations are performed using NVIDIA’s Isaac Gym simulator [165].

Datasets. The ORCA dataset (Sec. 5.4.1) contains synthetic data of 10s scenes generated using the

ORCA crowd simulator [13]. Up to 20 agents are placed in a 15m×15m environment with up to 20

static primitive obstacles. Agent placement and goal velocity along with obstacle location, scale, and

orientation are randomized per scene. The dataset contains two distinct subsets: ORCA-Maps has

many obstacles but few agents, while ORCA-Interact has no obstacles (i.e. no map annotations) but

many agents.

For real-world data (Sec. 5.4.2), we use ETH/UCY and nuScenes. ETH/UCY [192, 140] is

a common trajectory forecasting benchmark containing scenes with dense crowds and interesting

pedestrian dynamics but does not have semantic maps. nuScenes [26] contains 20s driving scenes

in common street settings. We convert the pedestrian bounding box annotations to 2D trajectories

and use them for training and evaluation. Detailed semantic maps are also annotated with layers for

roads, crosswalks, and sidewalks.

CHAPTER 5. CONTROLLABLE TRAJECTORY GENERATION 89

Figure 5.4: Guidance results on ORCA-Maps. For VAE and TRACE, 20 samples are visualized for
each pedestrian (the boxes) along with the final trajectory chosen via filtering which is bolded.

Metrics. We care about trajectory plausibility and meeting user controls. Controllability is evaluated

with a Guidance Error that depends on the task: e.g., for avoidance objectives this is collision rate,

while the waypoint error measures the minimum distance from the trajectory. Obstacle and Agent

Collision Rates measure the frequency of collisions. Realism is measured at the dataset or trajectory

level by (1) computing the Earth Mover’s Distance (EMD) between the generated and ground truth

test-set histograms of trajectory statistics (e.g. velocity, longitudinal/lateral acceleration) [284], or (2)

measuring the mean accelerations of each trajectory assuming pedestrians generally move smoothly.

5.4.1 Augmenting Crowd Simulation

We first evaluate TRACE trained on ORCA-Maps and ORCA-Interact. These provide a clean test

bed for comparisons since there is a clear definition of correct pedestrian behavior – no obstacle or

agent collisions are present in the data. All methods operate in an open loop by predicting a single

5s future for each pedestrian. This way, compounding errors inherent to closed-loop operation are

CHAPTER 5. CONTROLLABLE TRAJECTORY GENERATION 90

Guidance Collision Rate Realism (EMD)
Guide Method Error Obstacle Agent Vel Lon Acc Lat Acc

None VAE [210] – 0.076 0.118 0.038 0.039 0.040
TRACE – 0.050 0.132 0.029 0.008 0.009

Obstacle VAE [210] 0.018 0.018 0.116 0.040 0.036 0.039
Avoid TRACE-Filter 0.018 0.018 0.123 0.019 0.011 0.015

TRACE-Noisy 0.015 0.015 0.125 0.021 0.012 0.017
TRACE 0.014 0.014 0.124 0.020 0.011 0.017

Agent VAE [210] 0.010 0.075 0.010 0.041 0.038 0.039
Avoid TRACE-Filter 0.049 0.050 0.049 0.031 0.012 0.013

TRACE-Noisy 0.000 0.056 0.000 0.035 0.013 0.012
TRACE 0.000 0.058 0.000 0.025 0.010 0.012

Waypoint VAE [210] 0.078 0.051 0.092 0.070 0.031 0.033
TRACE-Filter 0.333 0.046 0.112 0.044 0.013 0.013
TRACE-Noisy 0.129 0.052 0.110 0.067 0.038 0.033
TRACE 0.105 0.048 0.093 0.057 0.013 0.014

Waypoint VAE [210] 0.207 0.021 0.015 0.053 0.032 0.032
& Obs Avoid TRACE-Filter 0.527 0.023 0.096 0.025 0.014 0.016
& Agt Avoid TRACE-Noisy 0.236 0.022 0.017 0.057 0.025 0.022

TRACE 0.211 0.021 0.009 0.036 0.007 0.009

Table 5.1: Guidance evaluation on ORCA-Maps dataset. TRACE using full diffusion guidance
improves upon VAE latent optimization and selective sampling (TRACE-Filter) in terms of meeting
objectives, while maintaining strong realism.

not a factor.

Results for single and multi-objective guidance on the ORCA-Maps test set are shown in Tab. 5.1.

TRACE is compared to a VAE baseline [210] adapted to our setup, which achieves controllability

through test-time latent optimization. This is a very strong baseline that generally works well but

requires potentially lengthy optimization. We also compare to two ablations: TRACE-Filter samples

from the diffusion model without guidance and chooses the best sample according to the guidance

loss (similar to [284]), while TRACE-Noisy uses the guidance formulated in Eq. (5.7) from prior

works [110, 314]. Models are trained on the combined dataset of ORCA-Maps (with map annotations)

and ORCA-Interact (no map annotations). The guidance losses are: None samples randomly with no

guidance; Obstacle avoid discourages collisions between map obstacles and pedestrian bounding

boxes; Agent avoid discourages collisions between pedestrians by denoising all their futures in a

scene jointly; Waypoint encourages a trajectory to pass through a goal at any point in the planning

horizon. For this experiment, the waypoint is set as the position of each pedestrian at 4s into the

CHAPTER 5. CONTROLLABLE TRAJECTORY GENERATION 91

Guidance Realism (Mean)
Guide Method Train Data w Error Lon Acc Lat Acc

Waypoint VAE [210] Mixed – 0.340 0.193 0.172
TRACE nuScenes -0.5 0.421 0.177 0.168

Mixed 0.0 0.551 0.159 0.145
Mixed -0.5 0.366 0.140 0.132

Waypoint VAE [210] Mixed – 0.962 0.443 0.441
perturbed TRACE nuScenes -0.5 0.977 0.239 0.238

Mixed 0.0 1.129 0.233 0.218
Mixed -0.5 0.802 0.212 0.204

Social VAE [210] Mixed – 0.297 0.109 0.104
groups TRACE nuScenes -0.5 0.287 0.155 0.158

Mixed 0.0 0.244 0.110 0.101
Mixed -0.5 0.245 0.094 0.087

Table 5.2: Guidance evaluation on nuScenes. Training on mixed data and using w<0 for classifier-
free sampling are important to achieve controllability for out-of-distribution objectives.

future in the ground truth data. These are in-distribution objectives, since they reinforce behavior

already observed in the ground truth data.

In Tab. 5.1, TRACE successfully achieves all objectives through the proposed guidance. It is

competitive or better than the VAE optimization in terms of guidance, while maintaining velocity

and acceleration distributions closer to ground truth as indicated by Realism. Fig. 5.4 shows that

random samples from the VAE contain collisions, and using latent optimization for guidance gives

similar local minima across samples thereby limiting diversity compared to TRACE. Finally, using

our proposed clean guidance (Eq. (5.8)) instead of the noisy version produces consistently better

results in guidance and realism.

5.4.2 Real-world Data Evaluation

We next evaluate controllability when trained on real-world data, and focus on out-of-distribution

(OOD) guidance objectives to emphasize the flexibility of our approach. In this experiment, meth-

ods operate in a closed loop: pedestrians are rolled out for 10s and re-plan at 1 Hz. Results on

a held out nuScenes split are shown in Tab. 5.2. We compare TRACE trained on mixed data

(ETH/UCY+nuScenes), after training on nuScenes only, and using two different classifier-free

sampling weights w. Along with in-distribution Waypoint (now at 9s), two additional objectives

are evaluated: Waypoint perturbed uses a noisily perturbed ground truth future position (at 9s),

CHAPTER 5. CONTROLLABLE TRAJECTORY GENERATION 92

Figure 5.5: nuScenes results demonstrating flexibility of TRACE. (a) Using mixed training and
w=−0.5 is best for noisy waypoints. (b) Social group guidance encourages sets of pedestrians to stay
close. (c) Mixed training (ETH/UCY+nuScenes) learns a more diverse distribution as demonstrated
by unconditional sampling.

requiring pedestrians to go off sidewalks or into streets to reach the goal; Social groups specifies

groups of agents to stay close and travel together. Groups are set heuristically based on spatial

proximity and velocity at initialization.

In Tab. 5.2, we observe that OOD flexibility requires (1) training on mixed data, and (2) classifier-

free sampling. Since nuScenes data is less diverse (people tend to follow the sidewalk), TRACE

trained on just nuScenes struggles to hit perturbed waypoints. Though the VAE is trained on mixed

data, it seemingly cannot leverage diverse pedestrian dynamics from ETH/UCY when rolling out

on nuScenes maps, limiting OOD success. TRACE reaches OOD objectives using classifier-free

sampling with w=−0.5 to downweight the conditioning of the semantic map and leverage diverse

trajectories learned from ETH/UCY. The flexibility of TRACE is further highlighted in Fig. 5.5.

CHAPTER 5. CONTROLLABLE TRAJECTORY GENERATION 93

Figure 5.6: Our animation system enables traversing variable terrains, avoiding obstacles, meeting
goals, and large crowds.

Fail Traj Follow Discrim
Terrain Guide Rate Error Reward

Random Procedural 0.133 0.680 1.950
None 0.093 0.104 1.887
Waypoint 0.107 0.111 2.113

Obstacles Procedural 0.307 0.948 2.278
None 0.125 0.093 2.512
Obs Avoid 0.063 0.089 2.521

Flat Procedural 0.127 0.371 2.320
(Crowd) None 0.087 0.082 2.374

Agt Avoid 0.013 0.071 2.402

Table 5.3: Closed-loop animation results. Our system successfully follows waypoints and avoids
collisions in a variety of terrains, and additional guidance improves performance.

5.4.3 Controllable Pedestrian Animation

Finally, we demonstrate our full controllable pedestrian animation system. TRACE is trained on

ORCA and used as a planner for the pre-trained PACER without any fine-tuning. We evaluate the

animations by: Fail Rate measures the fraction of agents that fall down or collide with an obstacle

or other agent, Trajectory Following Error measures the average deviation of the character from

TRACE’s plan, and Discriminator Reward is the mean reward returned by the adversarial motion

prior used to train PACER, which measures how human-like a generated motion appears.

Tab. 5.3 evaluates the animations from our system using TRACE with and without guidance

in various settings: Random is an assortment of smooth and rough slopes and stairs with varying

difficulties, Obstacles is a flat terrain with large obstacles, and Flat is a flat terrain with pedestrians

spawned in a crowd of 30. For each setting, 600 rollouts of 10s are simulated across 30 different

characters. As a baseline to determine the difficulty of environments and reasonable discriminator

rewards, we also include metrics when using the (terrain and obstacle unaware) Procedural trajectory

generation method used to train PACER.

CHAPTER 5. CONTROLLABLE TRAJECTORY GENERATION 94

Guide Waypoint Fail Traj Follow Discrim
Terrain Waypoint Value Error Rate Error Reward

Random
√

0.541 0.107 0.111 2.113√ √
0.481 0.100 0.112 2.162

Obstacles
√

1.065 0.220 0.138 2.552√ √
0.929 0.178 0.113 2.609

Flat
√

0.248 0.063 0.084 2.555
(Crowd)

√ √
0.175 0.053 0.084 2.607

Table 5.4: Using the value function learned in RL training as guidance improves quality of trajectory
following and robustness to varying terrain, obstacles, and other agents.

Our combined system performs well in the physically-simulated environment with TRACE

providing easy-to-follow trajectories resulting in high-quality animations from PACER as evalutated

by the discriminator. Diffusion guidance can further improve failure rates, especially for avoiding

agent collisions in dense crowds. Fig. 5.6 shows some qualitative applications of our animation

system. Tab. 5.4 shows the effect of using the learned value function from training PACER as a

guidance loss for TRACE. In each setting, adding value guidance in addition to waypoint guidance

makes trajectories easier to follow, reduces failures, and improves the discriminator reward. As a

result, waypoint guidance error also improves.

5.5 Discussion

We have introduced a controllable trajectory diffusion model, a robust physics-based humanoid

controller, and an end-to-end animation system that combines the two. Developing TRACE required

addressing several of the key features discussed in Sec. 1.1.1. To get accuracy and diversity, it was

necessary to adapt recent diffusion models to handle conditioning on context and generate plausible

action sequences for pedestrian control. Part of this conditioning was a learned map feature grid

that was queried at each denoising step to account for interactions between pedestrians and their

environment. Lastly, controllability was enabled through guidance of the denoising process.

Limitations and Future Work. TRACE represents an exciting step in being able to control the

high-level behavior of learned pedestrian models, and opens several directions for future work. First

is improving the efficiency of sampling from trajectory diffusion models to make them feasible for

real-time planning: currently TRACE takes 1-5s (depending on the guidance used) to generate a

motion plan. Recent work in distilling diffusion models to work with only a handful of steps [169]

offers a potential solution. In addition to high-level motion controllability, exploring how diffusion

CHAPTER 5. CONTROLLABLE TRAJECTORY GENERATION 95

Figure 5.7: Controllable Traffic Generation (CTG) uses two key stages to enable controllable
simulation. (Left) a conditional diffusion model is trained to generate realistic trajectories. (Right)
Guided model sampling uses signal temporal logic (STL) rules to meet desired objectives.

models can be extended to low-level control can also be an interesting followup.

5.6 Additional Related Contributions

This section briefly describes additional contributions made to the area of modeling human behavior

with 2D trajectories. In particular, Sec. 5.6.1 introduces CTG [314], which leverages a guided

diffusion framework similar to TRACE for simulating vehicle traffic and ensuring road rules are met.

5.6.1 Controllable Traffic Generation

Controllable and realistic traffic simulation is critical for developing and verifying autonomous

vehicles. Typical heuristic-based traffic models offer flexible control to make vehicles follow specific

trajectories and traffic rules. On the other hand, data-driven approaches generate realistic and

human-like behaviors, improving transfer from simulated to real-world traffic. However, to the

best of our knowledge, no traffic model offers both controllability and realism. In this work, we

develop a conditional diffusion model for controllable traffic generation (CTG) that allows users to

control desired properties of trajectories at test time (e.g., reach a goal or follow a speed limit) while

maintaining realism and physical feasibility through enforced dynamics. The key technical idea

CHAPTER 5. CONTROLLABLE TRAJECTORY GENERATION 96

is to leverage recent advances from diffusion modeling and differentiable logic to guide generated

trajectories to meet rules defined using signal temporal logic (STL). We further extend guidance to

multi-agent settings and enable interaction-based rules like collision avoidance. CTG is extensively

evaluated on the nuScenes dataset for diverse and composite rules, demonstrating improvement over

strong baselines in terms of the controllability-realism tradeoff.

Fig. 5.7 provides an overview of the key ideas of CTG. Please refer to the paper for full technical

details and results [314].

Chapter 6

Conclusion and Future Vision

In this thesis, we have seen how learned models of motion can be employed to solve fundamental

perception and generation problems for 3D humans, 3D objects, and 2D human behavior. To make

these learned motion models effective, we developed architectures and state spaces that allowed the

models to be accurate and diverse, aware of interactions, robust, generalizable, and controllable.

In Chapter 2, we saw with HuMoR that conditional VAEs can effectively capture the unobservable

factors of human motion, and model the change in 3D pose at a single time step in a generalizable

way. This allowed performing optimization in the learned latent space to robustly recover human

motion from video, even under noise and occlusions. Chapter 3 explored modeling more general 3D

object motion as the change in shape from the perspective of a sensor. For this purpose we introduced

CaSPR, which used a flexible learned latent space to model the change in 3D object shape, making

it agnostic to the type of observed motion. This enabled continuously reconstructing point cloud

sequences for both rigid and deformable objects and, more generally, helped solve several perception

problems from dynamic point cloud inputs.

In Chapters 4 and 5, we leveraged powerful generative models to capture realistic vehicle and

pedestrian trajectories. STRIVE (Chapter 4) used a scene-centric conditional VAE that captured

interactions between vehicles using message passing layers within a graph neural network. The

learned latent space of the VAE allowed test-time optimization to create traffic scenarios that meet

user specifications, such as causing or avoiding an accident. TRACE (Chapter 5) introduced a

denoising-diffusion model that queried a learned map feature grid throughout the denoising process

to reason about local interactions between pedestrians and their environment. By guiding the

denoising process, it also enabled users to specify objectives for trajectories, such as goal waypoints,

collision avoidance, or social groups.

97

CHAPTER 6. CONCLUSION AND FUTURE VISION 98

Each of these works offers promising progress towards enabling intelligent systems to success-

fully understand and leverage motion. However, there are still many problems to solve to fully

achieve real-world embodied systems and simulations teeming with realistic dynamic agents. This

leaves exciting future directions in generating and perceiving motion:

3D Human Motion Synthesis. On the heels of generative approaches like HuMoR (Chapter 2), it is

clear that data-driven models for 3D human motion have the potential to greatly impact the field of

character animation and simulation. We envision a character animation system that is intuitive, yet

flexible to be controlled by a user: digital characters can be dropped in a 3D scene, given direction

from the user (like a task to perform specified by natural language), and then they will realistically

interact with the world to carry out their tasks.

Achieving such a system requires developing three levels of motion understanding: (1) high-level

reasoning, (2) navigation, and (3) low-level pose control. For high-level reasoning, characters must

ingest commands from a user and make a plan to carry them out. This requires breaking a high level

language command (e.g., “make some pasta”) into a series of sub-commands that can be used to

successfully prompt a language-conditioned motion model [197, 251, 307] (e.g., “walk forward to the

kitchen” → “open the cupboard” → “grab the box of pasta” → · · ·). To carry out a plan, the character

must navigate in their environment to avoid collisions with static and dynamic obstacles [28]. In

contrast to traditional path planning algorithms that produce the shortest possible non-colliding path,

characters should carry out realistic and semantically-plausible paths that adhere to social norms or

rules of the environment.

The full 3D pose of the character must be synthesized to carry out the navigation and desired

actions. An open challenge here is ensuring generated poses realistically interact with the surrounding

environment [92, 310]. From sitting in chairs, to laying in beds, to picking up and manipulating

objects, motions must exhibit physically-realistic contacts and avoid unrealistic penetrations. One

interesting direction towards this end is mixing physics-based and data-driven models to get the

best of both worlds [296]. Motions should also be semantically plausible as to interact with objects

realistically based on affordances, e.g., picking up a mug by the handle. These kinds of interactions

can be seen as one way to control the motions generated by a model. In general, we would like to

develop generative models that can produce motions at test time to meet both soft objectives and hard

constraints. While TRACE (Chapter 5) makes progress in this direction for 2D trajectories using a

guided diffusion model, similar capabilities must be developed for full 3D pose so that users can

generate motion to meet language or action commands [251, 307], keyframe poses [48], specific

motion styles [254], or environment geometry [107].

CHAPTER 6. CONCLUSION AND FUTURE VISION 99

Modeling Human Behavior. The ability to generate realistic 2D trajectories for humans to follow

(i.e., human behavior) is useful beyond character animation. For example, populating simulations of

indoor and outdoor spaces, streets, and cities requires dynamic pedestrians, vehicles, and cyclists.

However, trajectories must adhere to constraints imposed by the environment, such as avoiding colli-

sions between agents and following rules of the road. While recent progress can avoid collision and

stay on-road for short-term rollouts (e.g., STRIVE and TRACE in Chapters 4 and 5), it becomes more

challenging for long-term simulations that must remain stable and robust for several minutes [284].

The work in this thesis shows that iterative test time procedures, either through optimization or

denoising-diffusion, are promising for enforcing constraints. However, efficiency must be improved

to make them feasible in real-time settings. Another potential solution is through reinforcement

learning (RL), which can produce behavior policies that successfully adhere to rules through rewards,

but do not always give human-like motions. Therefore, some combination of supervised learning and

RL may give both realistic motion and rule-following [16].

STRIVE demonstrates that generative traffic models can be useful for automatically creating

accident scenarios; an interesting direction is extending this to creating scenarios from higher-level

user directions. For example, a user may use natural language to specify the personality of a certain

driver (e.g., “agressive”), the maneuver to make (e.g., “turn left then go straight”), or a description at

the scene level (e.g., “traffic jam at a 4-way intersection”).

Learned Motion from Limited Supervision. The work in this thesis relies heavily on having a large-

scale, high-quality, and diverse dataset of motion to learn from. This includes human motion capture

(mocap) data, object point cloud observations, or vehicle and pedestrian trajectories. However, these

data sources are not always available: for animals, or humans interacting with objects and scenes,

clean mocap data is scarce and it is not scalable to collect more [291]. It is expensive to capture every

single type of motion we wish to model and in some cases, like simultaneously capturing human

and object pose, capture can be challenging due to heavy occlusions. One potential avenue is using

weakly supervised methods to learn 3D motion models directly from widely available videos, or

other data with limited 2D annotations or noisy 3D annotations. Recent advancements in generative

video models [102] could even be harnessed to create free data for some types of motion.

Improving Dynamic Perception. Finally, we must harness improved generation capabilities for

human and object motion for perception. While HuMoR follows analysis-by-synthesis by optimizing

for human motion in a learned latent space, this test-time procedure can be slow and prone to

local minima. Therefore, it is important to explore other ways these models can inform perception.

Moreover, it is not clear how other families of generative models can be used as a prior for perception:

CHAPTER 6. CONCLUSION AND FUTURE VISION 100

while VAEs are amenable to optimization in a low-dimensional latent space, diffusion models do

not afford such a formulation. The motion models in this thesis are also class specific, and assume

ahead of time what type of entity is being modeled. For general purpose dynamic perception, it will

be interesting to explore what kind of class-agnostic motion priors can be developed. For example,

learning point/pixel-level [91] motion priors or part-based representations [286].

The work in this thesis focuses on perceiving humans and objects in relative isolation. However,

in-the-wild observations have complex interactions with the environment, making it important to

consider recovering motion and scene geometry together [292]. Incorporating physics-based priors

or differentiable physics simulation could be particularly useful in this case [232, 87]. Real-world

observations may also be from a moving sensor, so it will be necessary to have approaches that

disambiguate between observer motion and the motion of the observed entity [289].

Overall, we anticipate that the efforts in this thesis are just the beginning of the exciting and

challenging area of learned motion modeling, and we expect future breakthroughs will help to solve

fundamental perception and generation problems in computer vision.

Bibliography

[1] Yasasa Abeysirigoonawardena, Florian Shkurti, and Gregory Dudek. Generating adversarial

driving scenarios in high-fidelity simulators. In 2019 International Conference on Robotics

and Automation (ICRA), pages 8271–8277. IEEE, 2019.

[2] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning

representations and generative models for 3d point clouds. In Proceedings of the International

Conference on Machine Learning (ICML), pages 40–49. PMLR, 2018.

[3] Emre Aksan, Manuel Kaufmann, and Otmar Hilliges. Structured prediction helps 3d human

motion modelling. In Proceedings of the IEEE/CVF International Conference on Computer

Vision, pages 7144–7153, 2019.

[4] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, and

Silvio Savarese. Social lstm: Human trajectory prediction in crowded spaces. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 961–971, 2016.

[5] Sadegh Aliakbarian, Fatemeh Sadat Saleh, Mathieu Salzmann, Lars Petersson, and Stephen

Gould. A stochastic conditioning scheme for diverse human motion prediction. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5223–5232,

2020.

[6] Anurag Arnab, Carl Doersch, and Andrew Zisserman. Exploiting temporal context for 3d

human pose estimation in the wild. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 3395–3404, 2019.

[7] Andrei Atanov, Alexandra Volokhova, Arsenii Ashukha, Ivan Sosnovik, and Dmitry

Vetrov. Semi-conditional normalizing flows for semi-supervised learning. arXiv preprint

arXiv:1905.00505, 2019.

101

BIBLIOGRAPHY 102

[8] Andreas Baak, Meinard Müller, Gaurav Bharaj, Hans-Peter Seidel, and Christian Theobalt.

A data-driven approach for real-time full body pose reconstruction from a depth camera. In

Consumer Depth Cameras for Computer Vision, pages 71–98. Springer, 2013.

[9] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauffeurnet: Learning to drive by

imitating the best and synthesizing the worst. In Robotics: Science and Systems (RSS), 2019.

[10] Albert E Beaton and John W Tukey. The fitting of power series, meaning polynomials,

illustrated on band-spectroscopic data. Technometrics, 16(2):147–185, 1974.

[11] Aseem Behl, Despoina Paschalidou, Simon Donné, and Andreas Geiger. Pointflownet:

Learning representations for rigid motion estimation from point clouds. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages

7962–7971, 2019.

[12] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for

sequence prediction with recurrent neural networks. In Proceedings of the 28th International

Conference on Neural Information Processing Systems - Volume 1, NIPS’15, page 1171–1179,

Cambridge, MA, USA, 2015. MIT Press.

[13] Jur van den Berg, Stephen J Guy, Ming Lin, and Dinesh Manocha. Reciprocal n-body collision

avoidance. In Robotics Research: The 14th International Symposium (ISRR), pages 3–19.

Springer, 2011.

[14] Luca Bergamini, Yawei Ye, Oliver Scheel, Long Chen, Chih Hu, Luca Del Pero, Błażej Osiński,

Hugo Grimmet, and Peter Ondruska. Simnet: Learning reactive self-driving simulations from

real-world observations. In 2021 IEEE International Conference on Robotics and Automation

(ICRA). IEEE, 2021.

[15] Dimitri P Bertsekas. A distributed asynchronous relaxation algorithm for the assignment

problem. In IEEE Conference on Decision and Control, pages 1703–1704, 1985.

[16] Raunak Bhattacharyya, Blake Wulfe, Derek J Phillips, Alex Kuefler, Jeremy Morton, Ransalu

Senanayake, and Mykel J Kochenderfer. Modeling human driving behavior through generative

adversarial imitation learning. IEEE Transactions on Intelligent Transportation Systems, 2022.

BIBLIOGRAPHY 103

[17] Benjamin Biggs, David Novotny, Sebastien Ehrhardt, Hanbyul Joo, Ben Graham, and Andrea

Vedaldi. 3d multi-bodies: Fitting sets of plausible 3d human models to ambiguous image data.

Advances in Neural Information Processing Systems (NeurIPS), 33, 2020.

[18] Marin Biloš and Stephan Günnemann. Equivariant normalizing flows for point processes and

sets. arXiv preprint arXiv:2010.03242, 2020.

[19] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter Gehler, Javier Romero, and

Michael J. Black. Keep it SMPL: Automatic estimation of 3D human pose and shape from a

single image. In Computer Vision – ECCV 2016, Lecture Notes in Computer Science. Springer

International Publishing, October 2016.

[20] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy

Bengio. Generating sentences from a continuous space. In 20th SIGNLL Conference on

Computational Natural Language Learning, CoNLL 2016, pages 10–21. Association for

Computational Linguistics (ACL), 2016.

[21] Matthew Brand and Aaron Hertzmann. Style machines. In ACM SIGGRAPH, pages 183–192,

July 2000.

[22] Robert Bridson. Fluid simulation for computer graphics. AK Peters/CRC Press, 2015.

[23] Robert Bridson, Sebastian Marino, and Ronald Fedkiw. Simulation of clothing with folds and

wrinkles. In ACM SIGGRAPH 2005 Courses, pages 3–es. 2005.

[24] Marcus A. Brubaker, David J. Fleet, and Aaron Hertzmann. Physics-based person tracking

using the anthropomorphic walker. IJCV, (1), 2010.

[25] Marcus A. Brubaker, Leonid Sigal, and David J. Fleet. Estimating contact dynamics. In

Proc. ICCV, 2009.

[26] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu,

Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal

dataset for autonomous driving. In Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pages 11621–11631, 2020.

[27] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh. Openpose: Realtime

multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2019.

BIBLIOGRAPHY 104

[28] Zhe Cao, Hang Gao, Karttikeya Mangalam, Qi-Zhi Cai, Minh Vo, and Jitendra Malik. Long-

term human motion prediction with scene context. In European Conference on Computer

Vision, pages 387–404. Springer, 2020.

[29] Sergio Casas, Cole Gulino, Simon Suo, Katie Luo, Renjie Liao, and Raquel Urtasun. Implicit

latent variable model for scene-consistent motion forecasting. In Computer Vision–ECCV

2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIII

16, pages 624–641. Springer, 2020.

[30] Sergio Casas, Abbas Sadat, and Raquel Urtasun. Mp3: A unified model to map, perceive,

predict and plan. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 14403–14412, 2021.

[31] Yuning Chai, Benjamin Sapp, Mayank Bansal, and Dragomir Anguelov. Multipath: Multiple

probabilistic anchor trajectory hypotheses for behavior prediction. In Conference on Robot

Learning (CoRL), pages 86–99. PMLR, 2020.

[32] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo

Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich

3d model repository. arXiv preprint arXiv:1512.03012, 2015.

[33] Baiming Chen, Xiang Chen, Qiong Wu, and Liang Li. Adversarial evaluation of autonomous

vehicles in lane-change scenarios. IEEE Transactions on Intelligent Transportation Systems,

2021.

[34] Changyou Chen, Chunyuan Li, Liqun Chen, Wenlin Wang, Yunchen Pu, and Lawrence Carin.

Continuous-time flows for efficient inference and density estimation. In Proceedings of the

International Conference on Machine Learning (ICML), 2018.

[35] Dengsheng Chen, Jun Li, Zheng Wang, and Kai Xu. Learning canonical shape space for

category-level 6d object pose and size estimation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pages 11973–11982, 2020.

[36] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking

atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017.

BIBLIOGRAPHY 105

[37] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary

differential equations. In Proceedings of the 32nd International Conference on Neural

Information Processing Systems, pages 6572–6583, 2018.

[38] Scott Saobing Chen and Ramesh A Gopinath. Gaussianization. In Proceedings of the Advances

in Neural Information Processing Systems (NeurIPS), pages 423–429, 2001.

[39] Yixin Chen, Siyuan Huang, Tao Yuan, Siyuan Qi, Yixin Zhu, and Song-Chun Zhu. Holistic++

scene understanding: Single-view 3d holistic scene parsing and human pose estimation with

human-object interaction and physical commonsense. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 8648–8657, 2019.

[40] Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pages 5939–5948, 2019.

[41] Vasileios Choutas, Georgios Pavlakos, Timo Bolkart, Dimitrios Tzionas, and Michael J Black.

Monocular expressive body regression through body-driven attention. In European Conference

on Computer Vision, pages 20–40. Springer, 2020.

[42] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets:

Minkowski convolutional neural networks. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pages 3075–3084, 2019.

[43] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 3d-r2n2:

A unified approach for single and multi-view 3d object reconstruction. In Proceedings of the

European Conference on Computer Vision (ECCV), pages 628–644. Springer, 2016.

[44] Earl A Coddington and Norman Levinson. Theory of ordinary differential equations. Tata

McGraw-Hill Education, 1955.

[45] Rob Cornish, Anthony L Caterini, George Deligiannidis, and Arnaud Doucet. Relax-

ing bijectivity constraints with continuously indexed normalising flows. arXiv preprint

arXiv:1909.13833, 2019.

[46] Enric Corona, Albert Pumarola, Guillem Alenya, and Francesc Moreno-Noguer. Context-

aware human motion prediction. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, June 2020.

BIBLIOGRAPHY 106

[47] Henggang Cui, Vladan Radosavljevic, Fang-Chieh Chou, Tsung-Han Lin, Thi Nguyen, Tzu-

Kuo Huang, Jeff Schneider, and Nemanja Djuric. Multimodal trajectory predictions for

autonomous driving using deep convolutional networks. In 2019 International Conference on

Robotics and Automation (ICRA), pages 2090–2096. IEEE, 2019.

[48] Rishabh Dabral, Muhammad Hamza Mughal, Vladislav Golyanik, and Christian Theobalt.

Mofusion: A framework for denoising-diffusion-based motion synthesis. In Computer Vision

and Pattern Recognition (CVPR), 2023.

[49] Jared Quincy Davis, Krzysztof Choromanski, Vikas Sindhwani, Jake Varley, Honglak Lee,

Jean-Jacques Slotine, Valerii Likhosterov, Adrian Weller, and Ameesh Makadia. Time de-

pendence in non-autonomous neural odes. In ICLR Workshop on Integration of Deep Neural

Models and Differential Equations, 2020.

[50] Patrick Dendorfer, Aljosa Osep, and Laura Leal-Taixé. Goal-gan: Multimodal trajectory

prediction based on goal position estimation. In Proceedings of the Asian Conference on

Computer Vision, 2020.

[51] Haowen Deng, Tolga Birdal, and Slobodan Ilic. Ppf-foldnet: Unsupervised learning of rotation

invariant 3d local descriptors. In Proceedings of the European Conference on Computer Vision

(ECCV), September 2018.

[52] Haowen Deng, Tolga Birdal, and Slobodan Ilic. Ppfnet: Global context aware local features

for robust 3d point matching. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 195–205, 2018.

[53] Jeevan Devaranjan, Amlan Kar, and Sanja Fidler. Meta-sim2: Unsupervised learning of scene

structure for synthetic data generation. In European Conference on Computer Vision, pages

715–733. Springer, 2020.

[54] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.

Advances in Neural Information Processing Systems, 34:8780–8794, 2021.

[55] Wenhao Ding, Baiming Chen, Bo Li, Kim Ji Eun, and Ding Zhao. Multimodal safety-

critical scenarios generation for decision-making algorithms evaluation. IEEE Robotics and

Automation Letters, 6(2):1551–1558, 2021.

BIBLIOGRAPHY 107

[56] Wenhao Ding, Baiming Chen, Minjun Xu, and Ding Zhao. Learning to collide: An adaptive

safety-critical scenarios generating method. In 2020 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 2243–2250. IEEE, 2020.

[57] Nemanja Djuric, Vladan Radosavljevic, Henggang Cui, Thi Nguyen, Fang-Chieh Chou, Tsung-

Han Lin, Nitin Singh, and Jeff Schneider. Uncertainty-aware short-term motion prediction of

traffic actors for autonomous driving. In Proceedings of the IEEE/CVF Winter Conference on

Applications of Computer Vision, pages 2095–2104, 2020.

[58] Carl Doersch and Andrew Zisserman. Sim2real transfer learning for 3d human pose estima-

tion: motion to the rescue. Advances in Neural Information Processing Systems (NeurIPS),

32:12949–12961, 2019.

[59] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun.

Carla: An open urban driving simulator. In Conference on robot learning, pages 1–16. PMLR,

2017.

[60] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. In Proceedings

of the Advances in Neural Information Processing Systems (NeurIPS), pages 3134–3144,

2019.

[61] Arthur Eddington. The nature of the physical world: The Giffor Lectures 1927, volume 23.

BoD–Books on Demand, 2019.

[62] Ahmed Elgammal and Chan-Su Lee. Separating style and content on a nonlinear manifold. In

IEEE Conf. Comp. Vis. and Pattern Recognition, pages 478–485, 2004. Vol. 1.

[63] Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi Liu, Hang Zhao, Sabeek Pradhan,

Yuning Chai, Ben Sapp, Charles Qi, Yin Zhou, et al. Large scale interactive motion forecasting

for autonomous driving: The waymo open motion dataset. ICCV, 2021.

[64] Anthony C Fang and Nancy S Pollard. Efficient synthesis of physically valid human motion.

Acm transactions on graphics (tog), 22(3):417–426, 2003.

[65] Liangji Fang, Qinhong Jiang, Jianping Shi, and Bolei Zhou. Tpnet: Trajectory proposal

network for motion prediction. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 6797–6806, 2020.

BIBLIOGRAPHY 108

[66] Roy Featherstone. Rigid body dynamics algorithms. Springer, 2014.

[67] Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam M Oberman. How to train

your neural ode. arXiv preprint arXiv:2002.02798, 2020.

[68] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model

fitting with applications to image analysis and automated cartography. Communications of the

ACM, 24(6):381–395, 1981.

[69] Jerome H Friedman. Exploratory projection pursuit. Journal of the American statistical

association, 82(397):249–266, 1987.

[70] Zipeng Fu, Xuxin Cheng, and Deepak Pathak. Deep whole-body control: Learning a unified

policy for manipulation and locomotion. ArXiv, abs/2210.10044, 2022.

[71] Varun Ganapathi, Christian Plagemann, Daphne Koller, and Sebastian Thrun. Real time motion

capture using a single time-of-flight camera. In 2010 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, pages 755–762. IEEE, 2010.

[72] Jiyang Gao, Chen Sun, Hang Zhao, Yi Shen, Dragomir Anguelov, Congcong Li, and Cordelia

Schmid. Vectornet: Encoding hd maps and agent dynamics from vectorized representation.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 11525–11533, 2020.

[73] S. Geman and D. McClure. Statistical methods for tomographic image reconstruction. Bulletin

of the International Statistical Institute, 52(4):5–21, 1987.

[74] Mevlana C Gemici, Danilo Rezende, and Shakir Mohamed. Normalizing flows on riemannian

manifolds. arXiv preprint arXiv:1611.02304, 2016.

[75] Georgios Georgakis, Ren Li, Srikrishna Karanam, Terrence Chen, Jana Košecká, and Ziyan

Wu. Hierarchical kinematic human mesh recovery. In European Conference on Computer

Vision, pages 768–784. Springer, 2020.

[76] Zahra Ghodsi, Siva Kumar Sastry Hari, Iuri Frosio, Timothy Tsai, Alejandro Troccoli,

Stephen W Keckler, Siddharth Garg, and Anima Anandkumar. Generating and charac-

terizing scenarios for safety testing of autonomous vehicles. In 2021 IEEE Intelligent Vehicles

Symposium (IV), pages 157–164. IEEE, 2021.

BIBLIOGRAPHY 109

[77] Saeed Ghorbani, Calden Wloka, Ali Etemad, Marcus A Brubaker, and Nikolaus F Troje.

Probabilistic character motion synthesis using a hierarchical deep latent variable model. In

Computer Graphics Forum, volume 39. Wiley Online Library, 2020.

[78] Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud.

Ffjord: Free-form continuous dynamics for scalable reversible generative models. In Interna-

tional Conference on Learning Representations, 2019.

[79] Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell, and Mathieu Aubry. A

papier-mâché approach to learning 3d surface generation. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), pages 216–224, 2018.

[80] Aditya Grover, Manik Dhar, and Stefano Ermon. Flow-gan: Combining maximum likelihood

and adversarial learning in generative models. In Thirty-Second AAAI Conference on Artificial

Intelligence, 2018.

[81] Tianpei Gu, Guangyi Chen, Junlong Li, Chunze Lin, Yongming Rao, Jie Zhou, and Jiwen Lu.

Stochastic trajectory prediction via motion indeterminacy diffusion. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 17113–17122,

2022.

[82] Xiuye Gu, Yijie Wang, Chongruo Wu, Yong Jae Lee, and Panqu Wang. Hplflownet: Hier-

archical permutohedral lattice flownet for scene flow estimation on large-scale point clouds.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pages 3254–3263, 2019.

[83] Riza Alp Guler and Iasonas Kokkinos. Holopose: Holistic 3d human reconstruction in-

the-wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 10884–10894, 2019.

[84] Rıza Alp Güler, Natalia Neverova, and Iasonas Kokkinos. Densepose: Dense human pose

estimation in the wild. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 7297–7306, 2018.

[85] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Bennamoun.

Deep learning for 3d point clouds: A survey. IEEE Transactions on Pattern Analysis and

Machine Intelligence (T-PAMI), 2020.

BIBLIOGRAPHY 110

[86] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi. Social gan:

Socially acceptable trajectories with generative adversarial networks. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 2255–2264, 2018.

[87] Erik Gärtner, Mykhaylo Andriluka, Erwin Coumans, and Cristian Sminchisescu. Differentiable

dynamics for articulated 3d human motion reconstruction. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2022.

[88] Marc Habermann, Weipeng Xu, Michael Zollhofer, Gerard Pons-Moll, and Christian Theobalt.

Deepcap: Monocular human performance capture using weak supervision. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5052–5063,

2020.

[89] Ikhsanul Habibie, Daniel Holden, Jonathan Schwarz, Joe Yearsley, and Taku Komura. A

recurrent variational autoencoder for human motion synthesis. In 28th British Machine Vision

Conference, 2017.

[90] Zekun Hao, Hadar Averbuch-Elor, Noah Snavely, and Serge Belongie. Dualsdf: Semantic

shape manipulation using a two-level representation. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[91] Adam W Harley, Zhaoyuan Fang, and Katerina Fragkiadaki. Particle video revisited: Tracking

through occlusions using point trajectories. In Computer Vision–ECCV 2022: 17th European

Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXII, pages 59–75.

Springer, 2022.

[92] Mohamed Hassan, Duygu Ceylan, Ruben Villegas, Jun Saito, Jimei Yang, Yi Zhou, and

Michael J Black. Stochastic scene-aware motion prediction. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 11374–11384, 2021.

[93] Mohamed Hassan, Vasileios Choutas, Dimitrios Tzionas, and Michael J. Black. Resolving 3D

human pose ambiguities with 3D scene constraints. In International Conference on Computer

Vision, pages 2282–2292, 2019.

[94] Mohamed Hassan, Partha Ghosh, Joachim Tesch, Dimitrios Tzionas, and Michael J Black.

Populating 3d scenes by learning human-scene interaction. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 14708–14718, 2021.

BIBLIOGRAPHY 111

[95] M. Brandon Haworth, Glen Berseth, Seonghyeon Moon, Petros Faloutsos, and Mubbasir

Kapadia. Deep integration of physical humanoid control and crowd navigation. Proceedings

of the 13th ACM SIGGRAPH Conference on Motion, Interaction and Games, 2020.

[96] Dirk Helbing, Illés Farkas, and Tamas Vicsek. Simulating dynamical features of escape panic.

Nature, 407(6803):487–490, 2000.

[97] Dirk Helbing and Peter Molnar. Social force model for pedestrian dynamics. Physical review

E, 51(5):4282, 1995.

[98] Gustav Eje Henter, Simon Alexanderson, and Jonas Beskow. Moglow: Probabilistic and

controllable motion synthesis using normalising flows. ACM Transactions on Graphics (TOG),

39(6):1–14, 2020.

[99] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko,

Diederik P Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High

definition video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

[100] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances

in Neural Information Processing Systems, 33:6840–6851, 2020.

[101] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint

arXiv:2207.12598, 2022.

[102] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and

David J Fleet. Video diffusion models. arXiv preprint arXiv:2204.03458, 2022.

[103] Daniel Holden, Taku Komura, and Jun Saito. Phase-functioned neural networks for character

control. ACM Transactions on Graphics (TOG), 36(4):1–13, 2017.

[104] Mir Rayat Imtiaz Hossain and James J Little. Exploiting temporal information for 3d human

pose estimation. In Proceedings of the European conference on computer vision (ECCV),

pages 68–84, 2018.

[105] J. Houston, G. Zuidhof, L. Bergamini, Y. Ye, A. Jain, S. Omari, V. Iglovikov, and P. Ondruska.

One thousand and one hours: Self-driving motion prediction dataset. https://level-5.

global/level5/data/, 2020.

https://level-5.global/level5/data/
https://level-5.global/level5/data/

BIBLIOGRAPHY 112

[106] Nicholas R. Howe, Michael E. Leventon, and William T. Freeman. Bayesian reconstruction of

3D human motion from single-camera video. In Advances in Neural Information Processing

Systems 12, pages 820–826, 2000.

[107] Siyuan Huang, Zan Wang, Puhao Li, Baoxiong Jia, Tengyu Liu, Yixin Zhu, Wei Liang, and

Song-Chun Zhu. Diffusion-based generation, optimization, and planning in 3d scenes. arXiv

preprint arXiv:2301.06015, 2023.

[108] Yinghao Huang, Federica Bogo, Christoph Lassner, Angjoo Kanazawa, Peter V Gehler, Javier

Romero, Ijaz Akhter, and Michael J Black. Towards accurate marker-less human shape and

pose estimation over time. In 2017 International Conference on 3D Vision, pages 421–430.

IEEE, 2017.

[109] Boris Ivanovic and Marco Pavone. The trajectron: Probabilistic multi-agent trajectory mod-

eling with dynamic spatiotemporal graphs. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 2375–2384, 2019.

[110] Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion

for flexible behavior synthesis. International Conference on Machine Learning (ICML), 2022.

[111] Yifeng Jiang, Tom Van Wouwe, Friedl De Groote, and C Karen Liu. Synthesis of biologically

realistic human motion using joint torque actuation. ACM Transactions On Graphics (TOG),

38(4):1–12, 2019.

[112] Daniel Johnson, Hugo Larochelle, and Daniel Tarlow. Learning graph structure with a finite-

state automaton layer. Advances in Neural Information Processing Systems, 33:3082–3093,

2020.

[113] Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and Jitendra Malik. End-to-end

recovery of human shape and pose. In Computer Vision and Pattern Regognition, 2018.

[114] Angjoo Kanazawa, Jason Y Zhang, Panna Felsen, and Jitendra Malik. Learning 3d human

dynamics from video. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2019.

[115] Abhishek Kar, Shubham Tulsiani, Joao Carreira, and Jitendra Malik. Category-specific object

reconstruction from a single image. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 1966–1974, 2015.

BIBLIOGRAPHY 113

[116] Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci, Justin Yuan, Matt Rusiniak,

David Acuna, Antonio Torralba, and Sanja Fidler. Meta-sim: Learning to generate synthetic

datasets. In Proceedings of the IEEE/CVF International Conference on Computer Vision,

pages 4551–4560, 2019.

[117] Ioannis Karamouzas, Nick Sohre, Ran Hu, and Stephen J Guy. Crowd space: a predictive

crowd analysis technique. ACM Transactions on Graphics (TOG), 37(6):1–14, 2018.

[118] R. Kesten, M. Usman, J. Houston, T. Pandya, K. Nadhamuni, A. Ferreira, M. Yuan, B. Low,

A. Jain, P. Ondruska, S. Omari, S. Shah, A. Kulkarni, A. Kazakova, C. Tao, L. Platinsky,

W. Jiang, and V. Shet. Level 5 perception dataset 2020. https://level-5.global/

level5/data/, 2019.

[119] Jongmin Kim, Yeongho Seol, Taesoo Kwon, and Jehee Lee. Interactive manipulation of

large-scale crowd animation. ACM Transactions on Graphics (TOG), 33(4):1–10, 2014.

[120] Seung Wook Kim, Jonah Philion, Antonio Torralba, and Sanja Fidler. DriveGAN: Towards a

Controllable High-Quality Neural Simulation. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Jun. 2021.

[121] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In

International Conference on Learning Representations, 2015.

[122] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In Proceedings of the

International Conference on Learning Representations (ICLR), 2014.

[123] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.

In Advances in Neural Information Processing Systems, pages 10215–10224, 2018.

[124] Moritz Klischat and Matthias Althoff. Generating critical test scenarios for automated vehicles

with evolutionary algorithms. In 2019 IEEE Intelligent Vehicles Symposium (IV), pages

2352–2358. IEEE, 2019.

[125] Ivan Kobyzev, Simon Prince, and Marcus A Brubaker. Normalizing flows: Introduction and

ideas. arXiv preprint arXiv:1908.09257, 2019.

[126] Muhammed Kocabas, Nikos Athanasiou, and Michael J. Black. Vibe: Video inference for

human body pose and shape estimation. In The IEEE Conference on Computer Vision and

Pattern Recognition, June 2020.

https://level-5.global/level5/data/
https://level-5.global/level5/data/

BIBLIOGRAPHY 114

[127] Muhammed Kocabas, Chun-Hao P Huang, Otmar Hilliges, and Michael J Black. Pare:

Part attention regressor for 3d human body estimation. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 11127–11137, 2021.

[128] Jonas Köhler, Leon Klein, and Frank Noé. Equivariant flows: sampling configurations for

multi-body systems with symmetric energies. arXiv preprint arXiv:1910.00753, 2019.

[129] Nikos Kolotouros, Georgios Pavlakos, Michael J. Black, and Kostas Daniilidis. Learning

to reconstruct 3D human pose and shape via model-fitting in the loop. In Proceedings

International Conference on Computer Vision (ICCV), pages 2252–2261. IEEE, October 2019.

ISSN: 2380-7504.

[130] Jason Kong, Mark Pfeiffer, Georg Schildbach, and Francesco Borrelli. Kinematic and dynamic

vehicle models for autonomous driving control design. In 2015 IEEE intelligent vehicles

symposium (IV), pages 1094–1099. IEEE, 2015.

[131] Vineet Kosaraju, Amir Sadeghian, Roberto Martı́n-Martı́n, Ian Reid, S Hamid Rezatofighi,

and Silvio Savarese. Social-bigat: Multimodal trajectory forecasting using bicycle-gan and

graph attention networks. Advances in Neural Information Processing Systems (NeurIPS),

2019.

[132] Lucas Kovar, Michael Gleicher, and Frédéric Pighin. Motion graphs. In ACM Transactions on

Graphics 21(3), Proc. SIGGRAPH, pages 473–482, July 2002.

[133] Wilhelm Kutta. Beitrag zur naherungsweisen integration totaler differentialgleichungen. Z.

Math. Phys., 46:435–453, 1901.

[134] Christoph Lassner, Javier Romero, Martin Kiefel, Federica Bogo, Michael J Black, and

Peter V Gehler. Unite the people: Closing the loop between 3d and 2d human representations.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages

6050–6059, 2017.

[135] Colin Lea, Michael D Flynn, Rene Vidal, Austin Reiter, and Gregory D Hager. Temporal

convolutional networks for action segmentation and detection. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), pages 156–165, 2017.

BIBLIOGRAPHY 115

[136] Jaedong Lee, Jungdam Won, and Jehee Lee. Crowd simulation by deep reinforcement

learning. In Proceedings of the 11th Annual International Conference on Motion, Interaction,

and Games, pages 1–7, 2018.

[137] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B Choy, Philip HS Torr, and Manmo-

han Chandraker. Desire: Distant future prediction in dynamic scenes with interacting agents.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages

336–345, 2017.

[138] Stéphanie Lefèvre, Dizan Vasquez, and Christian Laugier. A survey on motion prediction and

risk assessment for intelligent vehicles. ROBOMECH journal, 1(1):1–14, 2014.

[139] Marilena Lemonari, Rafael Blanco, Panayiotis Charalambous, Nuria Pelechano, Marios

Avraamides, Julien Pettré, and Yiorgos Chrysanthou. Authoring virtual crowds: A survey. In

Computer Graphics Forum, volume 41, pages 677–701. Wiley Online Library, 2022.

[140] Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski. Crowds by example. In Computer

graphics forum, volume 26, pages 655–664. Wiley Online Library, 2007.

[141] Xiaolong Li, He Wang, Li Yi, Leonidas J Guibas, A Lynn Abbott, and Shuran Song. Category-

level articulated object pose estimation. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pages 3706–3715, 2020.

[142] Yan Li, Tianshu Wang, and Heung-Yeung Shum. Motion texture: A two-level statistical model

for character motion synthesis. In ACM Transactions on Graphics 21(3), Proc. SIGGRAPH,

pages 465–472, July 2002.

[143] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn:

Convolution on x-transformed points. In Proceedings of the Advances in Neural Information

Processing Systems (NeurIPS), pages 820–830, 2018.

[144] Yiming Li, Congcong Wen, Felix Juefei-Xu, and Chen Feng. Fooling lidar perception via

adversarial trajectory perturbation. In Proceedings of the IEEE/CVF International Conference

on Computer Vision, pages 7898–7907, 2021.

[145] Zongmian Li, Jiri Sedlar, Justin Carpentier, Ivan Laptev, Nicolas Mansard, and Josef Sivic.

Estimating 3d motion and forces of person-object interactions from monocular video. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.

BIBLIOGRAPHY 116

[146] Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song Feng, and Raquel Urtasun.

Learning lane graph representations for motion forecasting. In European Conference on

Computer Vision, pages 541–556. Springer, 2020.

[147] Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel van de Panne. Character controllers

using motion vaes. In ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH),

volume 39. ACM, 2020.

[148] C. Karen Liu, Aaron Hertzmann, and Zoran Popović. Learning physics-based motion style

with nonlinear inverse optimization. ACM Trans. Graph, 2005.

[149] Chen Liu, Kihwan Kim, Jinwei Gu, Yasutaka Furukawa, and Jan Kautz. Planercnn: 3d plane

detection and reconstruction from a single image. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 4450–4459, 2019.

[150] Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing

flows. In Advances in Neural Information Processing Systems, pages 13556–13566, 2019.

[151] Miao Liu, Dexin Yang, Yan Zhang, Zhaopeng Cui, James M Rehg, and Siyu Tang. 4d human

body capture from egocentric video via 3d scene grounding. In 2021 international conference

on 3D vision (3DV), pages 930–939. IEEE, 2021.

[152] Xingyu Liu, Charles R Qi, and Leonidas J Guibas. Flownet3d: Learning scene flow in 3d

point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2019.

[153] Xingyu Liu, Mengyuan Yan, and Jeannette Bohg. Meteornet: Deep learning on dynamic 3d

point cloud sequences. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 9246–9255, 2019.

[154] Yicheng Liu, Jinghuai Zhang, Liangji Fang, Qinhong Jiang, and Bolei Zhou. Multimodal

motion prediction with stacked transformers. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 7577–7586, 2021.

[155] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black.

SMPL: A skinned multi-person linear model. ACM Trans. Graphics (Proc. SIGGRAPH Asia),

34(6):248:1–248:16, October 2015.

BIBLIOGRAPHY 117

[156] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-Pang

Flötteröd, Robert Hilbrich, Leonhard Lücken, Johannes Rummel, Peter Wagner, and Evamarie

Wießner. Microscopic traffic simulation using sumo. In 2018 21st International Conference

on Intelligent Transportation Systems (ITSC), pages 2575–2582. IEEE, 2018.

[157] Aaron Lou, Derek Lim, Isay Katsman, Leo Huang, Qingxuan Jiang, Ser-Nam Lim, and Christo-

pher De Sa. Neural manifold ordinary differential equations. arXiv preprint arXiv:2006.10254,

2020.

[158] James Lucas, George Tucker, Roger B Grosse, and Mohammad Norouzi. Don't blame the elbo!

a linear vae perspective on posterior collapse. In H. Wallach, H. Larochelle, A. Beygelzimer,

F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing

Systems, volume 32. Curran Associates, Inc., 2019.

[159] Zhengyi Luo, S Alireza Golestaneh, and Kris M Kitani. 3d human motion estimation via

motion compression and refinement. In Proceedings of the Asian Conference on Computer

Vision, 2020.

[160] Zhengyi Luo, Ryo Hachiuma, Ye Yuan, and Kris Kitani. Dynamics-regulated kinematic policy

for egocentric pose estimation. In Advances in Neural Information Processing Systems, 2021.

[161] Yecheng Jason Ma, Jeevana Priya Inala, Dinesh Jayaraman, and Osbert Bastani. Likelihood-

based diverse sampling for trajectory forecasting. In Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision, pages 13279–13288, 2021.

[162] Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, and Michael J.

Black. AMASS: Archive of motion capture as surface shapes. In International Conference on

Computer Vision, 2019.

[163] Osama Makansi, Özgün Cicek, Yassine Marrakchi, and Thomas Brox. On exposing the

challenging long tail in future prediction of traffic actors. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 13147–13157, 2021.

[164] Osama Makansi, Julius Von Kügelgen, Francesco Locatello, Peter Vincent Gehler, Dominik

Janzing, Thomas Brox, and Bernhard Schölkopf. You mostly walk alone: Analyzing feature

attribution in trajectory prediction. In International Conference on Learning Representations,

2022.

BIBLIOGRAPHY 118

[165] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles

Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. Isaac

gym: High performance gpu-based physics simulation for robot learning. arXiv preprint

arXiv:2108.10470, 2021.

[166] Karttikeya Mangalam, Yang An, Harshayu Girase, and Jitendra Malik. From goals, way-

points & paths to long term human trajectory forecasting. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 15233–15242, 2021.

[167] Dushyant Mehta, Oleksandr Sotnychenko, Franziska Mueller, Weipeng Xu, Mohamed El-

gharib, Pascal Fua, Hans-Peter Seidel, Helge Rhodin, Gerard Pons-Moll, and Christian

Theobalt. Xnect: Real-time multi-person 3d motion capture with a single rgb camera. ACM

Transactions on Graphics (TOG), 39(4):82–1, 2020.

[168] Dushyant Mehta, Srinath Sridhar, Oleksandr Sotnychenko, Helge Rhodin, Mohammad Shafiei,

Hans-Peter Seidel, Weipeng Xu, Dan Casas, and Christian Theobalt. Vnect: Real-time 3d

human pose estimation with a single rgb camera. ACM Transactions on Graphics (TOG),

36(4):1–14, 2017.

[169] Chenlin Meng, Ruiqi Gao, Diederik P Kingma, Stefano Ermon, Jonathan Ho, and Tim

Salimans. On distillation of guided diffusion models. arXiv preprint arXiv:2210.03142, 2022.

[170] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas

Geiger. Occupancy networks: Learning 3d reconstruction in function space. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages

4460–4470, 2019.

[171] Niloy J Mitra, Simon Flöry, Maks Ovsjanikov, Natasha Gelfand, Leonidas J Guibas, and

Helmut Pottmann. Dynamic geometry registration. In Symposium on geometry processing,

pages 173–182, 2007.

[172] Aron Monszpart, Paul Guerrero, Duygu Ceylan, Ersin Yumer, and Niloy J. Mitra. iMapper:

Interaction-guided scene mapping from monocular videos. ACM SIGGRAPH, 2019.

[173] Aron Monszpart, Nils Thuerey, and Niloy J Mitra. Smash: physics-guided reconstruction of

collisions from videos. ACM Transactions on Graphics (TOG), 35(6):1–14, 2016.

BIBLIOGRAPHY 119

[174] Michael Montemerlo, Jan Becker, Suhrid Bhat, Hendrik Dahlkamp, Dmitri Dolgov, Scott

Ettinger, Dirk Haehnel, Tim Hilden, Gabe Hoffmann, Burkhard Huhnke, et al. Junior: The

stanford entry in the urban challenge. Journal of field Robotics, 25(9):569–597, 2008.

[175] Wassim G Najm, John D Smith, and Mikio Yanagisawa. Pre-Crash Scenario Typology for

Crash Avoidance Research. U.S. Department of Transportation, National Highway Traffic

Safety Administration, 2007.

[176] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic

models. In International Conference on Machine Learning, pages 8162–8171. PMLR, 2021.

[177] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Occupancy

flow: 4d reconstruction by learning particle dynamics. In Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV), pages 5379–5389, 2019.

[178] David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, and Andrea Vedaldi.

C3dpo: Canonical 3d pose networks for non-rigid structure from motion. In Proceedings of

the IEEE/CVF International Conference on Computer Vision (ICCV), pages 7688–7697, 2019.

[179] Matthew O’Kelly, Aman Sinha, Hongseok Namkoong, Russ Tedrake, and John C Duchi.

Scalable end-to-end autonomous vehicle testing via rare-event simulation. In NeurIPS, 2018.

[180] Derek Onken, Samy Wu Fung, Xingjian Li, and Lars Ruthotto. Ot-flow: Fast and accurate

continuous normalizing flows via optimal transport. arXiv preprint arXiv:2006.00104, 2020.

[181] Dirk Ormoneit, Hedvig Sidenbladh, Michael J. Black, and Trevor Hastie. Learning and

tracking cyclic human motion. In Advances in Neural Information Processing Systems 13,

pages 894–900, 2001.

[182] Avik Pal, Jonah Philion, Yuan-Hong Liao, and Sanja Fidler. Emergent road rules in multi-agent

driving environments. In International Conference on Learning Representations, 2020.

[183] Andreas Panayiotou, Theodoros Kyriakou, Marilena Lemonari, Yiorgos Chrysanthou, and

Panayiotis Charalambous. Ccp: Configurable crowd profiles. In ACM SIGGRAPH 2022

Conference Proceedings, pages 1–10, 2022.

[184] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji

Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. arXiv

preprint arXiv:1912.02762, 2019.

BIBLIOGRAPHY 120

[185] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.

DeepSDF: Learning continuous signed distance functions for shape representation. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

2019.

[186] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,

Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in

pytorch. In Advances in Neural Information Processing Systems, 2017.

[187] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed A. A. Osman,

Dimitrios Tzionas, and Michael J. Black. Expressive body capture: 3D hands, face, and body

from a single image. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), pages 10975–10985, 2019.

[188] Georgios Pavlakos, Luyang Zhu, Xiaowei Zhou, and Kostas Daniilidis. Learning to estimate

3d human pose and shape from a single color image. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 459–468, 2018.

[189] Dario Pavllo, Christoph Feichtenhofer, Michael Auli, and David Grangier. Modeling human

motion with quaternion-based neural networks. International Journal of Computer Vision,

pages 1–18, 2019.

[190] Dario Pavllo, Christoph Feichtenhofer, David Grangier, and Michael Auli. 3d human pose

estimation in video with temporal convolutions and semi-supervised training. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7753–7762,

2019.

[191] Vladimir Pavlović, James M. Rehg, and John MacCormick. Learning switching linear models

of human motion. In Advances in Neural Information Processing Systems 13, pages 981–987,

2001.

[192] Stefano Pellegrini, Andreas Ess, Konrad Schindler, and Luc Van Gool. You’ll never walk

alone: Modeling social behavior for multi-target tracking. In 2009 IEEE 12th international

conference on computer vision, pages 261–268. IEEE, 2009.

[193] Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel van de Panne. Deeploco: Dynamic

locomotion skills using hierarchical deep reinforcement learning. ACM Transactions on

Graphics (Proc. SIGGRAPH 2017), 36(4), 2017.

BIBLIOGRAPHY 121

[194] Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine, and Sanja Fidler. Ase: Large-scale

reusable adversarial skill embeddings for physically simulated characters. ACM Trans. Graph.,

41(4), July 2022.

[195] Xue Bin Peng, Angjoo Kanazawa, Jitendra Malik, Pieter Abbeel, and Sergey Levine. Sfv:

Reinforcement learning of physical skills from videos. ACM Trans. Graph, 2018.

[196] Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa. Amp: Adversarial

motion priors for stylized physics-based character control. ACM Trans. Graph., 40(4), July

2021.

[197] Mathis Petrovich, Michael J. Black, and Gül Varol. TEMOS: Generating diverse human

motions from textual descriptions. In European Conference on Computer Vision (ECCV),

2022.

[198] Jonah Philion, Amlan Kar, and Sanja Fidler. Learning to evaluate perception models using

planner-centric metrics. In CVPR, 2020.

[199] Philip Polack, Florent Altché, Brigitte d’Andréa Novel, and Arnaud de La Fortelle. The

kinematic bicycle model: A consistent model for planning feasible trajectories for autonomous

vehicles? In 2017 IEEE Intelligent Vehicles Symposium (IV), pages 812–818, 2017.

[200] Lukas Prantl, Nuttapong Chentanez, Stefan Jeschke, and Nils Thuerey. Tranquil clouds:

Neural networks for learning temporally coherent features in point clouds. In Proceedings of

the International Conference on Learning Representations (ICLR), 2020.

[201] Maria Priisalu, Ciprian Paduraru, Aleksis Pirinen, and Cristian Sminchisescu. Semantic

synthesis of pedestrian locomotion. In Proceedings of the Asian Conference on Computer

Vision, 2020.

[202] Maria Priisalu, Aleksis Pirinen, Ciprian Paduraru, and Cristian Sminchisescu. Generating

scenarios with diverse pedestrian behaviors for autonomous vehicle testing. In Conference on

Robot Learning, pages 1247–1258. PMLR, 2022.

[203] Albert Pumarola, Stefan Popov, Francesc Moreno-Noguer, and Vittorio Ferrari. C-flow:

Conditional generative flow models for images and 3d point clouds. Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV), 2020.

BIBLIOGRAPHY 122

[204] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point

sets for 3d classification and segmentation. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pages 652–660, 2017.

[205] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical

feature learning on point sets in a metric space. In Advances in neural information processing

systems, 2017.

[206] Davis Rempe, Tolga Birdal, Aaron Hertzmann, Jimei Yang, Srinath Sridhar, and Leonidas J.

Guibas. Humor: 3d human motion model for robust pose estimation. In International

Conference on Computer Vision (ICCV), 2021.

[207] Davis Rempe, Tolga Birdal, Yongheng Zhao, Zan Gojcic, Srinath Sridhar, and Leonidas J.

Guibas. Caspr: Learning canonical spatiotemporal point cloud representations. In Advances

in Neural Information Processing Systems (NeurIPS), 2020.

[208] Davis Rempe, Leonidas J. Guibas, Aaron Hertzmann, Bryan Russell, Ruben Villegas, and

Jimei Yang. Contact and human dynamics from monocular video. In Proceedings of the

European Conference on Computer Vision (ECCV), 2020.

[209] Davis Rempe, Zhengyi Luo, Xue Bin Peng, Ye Yuan, Kris Kitani, Karsten Kreis, Sanja Fidler,

and Or Litany. Trace and pace: Controllable pedestrian animation via guided trajectory

diffusion. In Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

[210] Davis Rempe, Jonah Philion, Leonidas J. Guibas, Sanja Fidler, and Or Litany. Generating

useful accident-prone driving scenarios via a learned traffic prior. In Conference on Computer

Vision and Pattern Recognition (CVPR), 2022.

[211] Davis Rempe, Srinath Sridhar, He Wang, and Leonidas Guibas. Predicting the physical

dynamics of unseen 3d objects. In Winter Conference on Applications of Computer Vision

(WACV), 2020.

[212] Zhiguo Ren, Panayiotis Charalambous, Julien Bruneau, Qunsheng Peng, and Julien Pettré.

Group modeling: A unified velocity-based approach. In Computer Graphics Forum, volume 36,

pages 45–56. Wiley Online Library, 2017.

[213] Cinjon Resnick, Or Litany, Amlan Kar, Karsten Kreis, James Lucas, Kyunghyun Cho, and

Sanja Fidler. Causal bert: Improving object detection by searching for challenging groups.

BIBLIOGRAPHY 123

In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)

Workshops, pages 2972–2981, October 2021.

[214] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In

International Conference on Machine Learning, pages 1530–1538, 2015.

[215] Danilo Jimenez Rezende, Sébastien Racanière, Irina Higgins, and Peter Toth. Equivariant

hamiltonian flows. arXiv preprint arXiv:1909.13739, 2019.

[216] Oren Rippel and Ryan Prescott Adams. High-dimensional probability estimation with deep

density models. arXiv preprint arXiv:1302.5125, 2013.

[217] Chris Rockwell and David F Fouhey. Full-body awareness from partial observations. In

Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,

Proceedings, Part XVII 16, pages 522–539, 2020.

[218] Javier Romero, Dimitrios Tzionas, and Michael J. Black. Embodied hands: Modeling and

capturing hands and bodies together. ACM Transactions on Graphics, (Proc. SIGGRAPH

Asia), 36(6), November 2017.

[219] Charles Rose, Michael F. Cohen, and Bobby Bodenheimer. Verbs and adverbs: Multidi-

mensional motion interpolation. IEEE Computer Graphics and Applications, 18(5):32–40,

1998.

[220] Yulia Rubanova, Tian Qi Chen, and David K Duvenaud. Latent ordinary differential equations

for irregularly-sampled time series. In Proceedings of the Advances in Neural Information

Processing Systems (NeurIPS), 2019.

[221] Andrey Rudenko, Luigi Palmieri, Michael Herman, Kris M Kitani, Dariu M Gavrila, and

Kai O Arras. Human motion trajectory prediction: A survey. The International Journal of

Robotics Research, 39(8):895–935, 2020.

[222] Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to walk in minutes

using massively parallel deep reinforcement learning, 2021.

[223] Carl Runge. Über die numerische auflösung von differentialgleichungen. Mathematische

Annalen, 46(2):167–178, 1895.

BIBLIOGRAPHY 124

[224] Abbas Sadat, Sergio Casas, Mengye Ren, Xinyu Wu, Pranaab Dhawan, and Raquel Ur-

tasun. Perceive, predict, and plan: Safe motion planning through interpretable semantic

representations. In European Conference on Computer Vision, pages 414–430. Springer, 2020.

[225] Abbas Sadat, Mengye Ren, Andrei Pokrovsky, Yen-Chen Lin, Ersin Yumer, and Raquel

Urtasun. Jointly learnable behavior and trajectory planning for self-driving vehicles. In

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages

3949–3956. IEEE, 2019.

[226] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo Kanazawa, and

Hao Li. Pifu: Pixel-aligned implicit function for high-resolution clothed human digitization. In

Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October

2019.

[227] Hadi Salman, Payman Yadollahpour, Tom Fletcher, and Kayhan Batmanghelich. Deep

diffeomorphic normalizing flows. arXiv preprint arXiv:1810.03256, 2018.

[228] Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and Marco Pavone. Trajectron++:

Dynamically-feasible trajectory forecasting with heterogeneous data. In Computer Vision–

ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,

Part XVIII 16, pages 683–700. Springer, 2020.

[229] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal

policy optimization algorithms. ArXiv, abs/1707.06347, 2017.

[230] Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. Mining point cloud local structures

by kernel correlation and graph pooling. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), volume 4, 2018.

[231] Mingyi Shi, Kfir Aberman, Andreas Aristidou, Taku Komura, Dani Lischinski, Daniel Cohen-

Or, and Baoquan Chen. Motionet: 3d human motion reconstruction from monocular video

with skeleton consistency. ACM Transactions on Graphics (TOG), 40(1):1–15, 2020.

[232] Soshi Shimada, Vladislav Golyanik, Weipeng Xu, Patrick Pérez, and Christian Theobalt.

Neural monocular 3d human motion capture with physical awareness. ACM Transactions on

Graphics, 40(4), aug 2021.

BIBLIOGRAPHY 125

[233] Soshi Shimada, Vladislav Golyanik, Weipeng Xu, and Christian Theobalt. Physcap: Physically

plausible monocular 3d motion capture in real time. ACM Trans. Graph., 39(6), November

2020.

[234] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi, Antonio Criminisi, and Andrew

Fitzgibbon. Scene coordinate regression forests for camera relocalization in rgb-d images.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2930–2937, 2013.

[235] Hedvig Sidenbladh, Michael J. Black, and David J. Fleet. Stochastic tracking of 3D human

figures using 2D image motion. In ECCV, pages 702–718, 2000. Part II.

[236] Leonid Sigal, Alexandru O Balan, and Michael J Black. Humaneva: Synchronized video and

motion capture dataset and baseline algorithm for evaluation of articulated human motion.

International journal of computer vision, 87(1-2):4, 2010.

[237] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wetzstein, and

Michael Zollhofer. Deepvoxels: Learning persistent 3d feature embeddings. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages

2437–2446, 2019.

[238] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep un-

supervised learning using nonequilibrium thermodynamics. In International Conference on

Machine Learning, pages 2256–2265. PMLR, 2015.

[239] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using

deep conditional generative models. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and

R. Garnett, editors, Advances in Neural Information Processing Systems, volume 28, pages

3483–3491. Curran Associates, Inc., 2015.

[240] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data

distribution. Advances in Neural Information Processing Systems, 32, 2019.

[241] Srinath Sridhar, Davis Rempe, Julien Valentin, Sofien Bouaziz, and Leonidas J. Guibas.

Multiview aggregation for learning category-specific shape reconstruction. In Advances in

Neural Information Processing Systems (NeurIPS), 2019.

BIBLIOGRAPHY 126

[242] Sebastian Starke, He Zhang, Taku Komura, and Jun Saito. Neural state machine for character-

scene interactions. ACM Trans. Graph., 38(6):209–1, 2019.

[243] Colton Stearns, Davis Rempe, Jie Li, Rares Ambrus, Vitor Guizilini, Sergey Zakharov,

Yanchao Yang, and Leonidas J. Guibas. Spot: Spatiotemporal modeling for 3d object tracking.

In European Conference on Computer Vision (ECCV), 2022.

[244] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan

Yang, and Jan Kautz. Splatnet: Sparse lattice networks for point cloud processing. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2530–2539, 2018.

[245] Haoliang Sun, Ronak Mehta, Hao H Zhou, Zhichun Huang, Sterling C Johnson, Vivek

Prabhakaran, and Vikas Singh. Dual-glow: Conditional flow-based generative model for

modality transfer. In Proceedings of the IEEE International Conference on Computer Vision,

pages 10611–10620, 2019.

[246] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul

Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for

autonomous driving: Waymo open dataset. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 2446–2454, 2020.

[247] Yu Sun, Yun Ye, Wu Liu, Wenpeng Gao, Yili Fu, and Tao Mei. Human mesh recovery

from monocular images via a skeleton-disentangled representation. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, pages 5349–5358, 2019.

[248] Simon Suo, Sebastian Regalado, Sergio Casas, and Raquel Urtasun. Trafficsim: Learning

to simulate realistic multi-agent behaviors. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 10400–10409, 2021.

[249] Esteban G Tabak and Cristina V Turner. A family of nonparametric density estimation

algorithms. Communications on Pure and Applied Mathematics, 66(2):145–164, 2013.

[250] Graham W. Taylor, Geoffrey E. Hinton, and Sam T. Roweis. Modeling human motion using

binary latent variables. In Proc. NIPS, 2007.

BIBLIOGRAPHY 127

[251] Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Amit H Bermano, and Daniel Cohen-Or.

Human motion diffusion model. In International Conference on Learning Representations

(ICLR), 2022.

[252] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François

Goulette, and Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point

clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision

(ICCV), pages 6411–6420, 2019.

[253] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Congested traffic states in empirical

observations and microscopic simulations. Physical review E, 62(2):1805, 2000.

[254] Jonathan Tseng, Rodrigo Castellon, and C Karen Liu. Edge: Editable dance generation from

music. arXiv preprint arXiv:2211.10658, 2022.

[255] Shuhei Tsuchida, Satoru Fukayama, Masahiro Hamasaki, and Masataka Goto. Aist dance

video database: Multi-genre, multi-dancer, and multi-camera database for dance information

processing. In Proceedings of the 20th International Society for Music Information Retrieval

Conference, ISMIR 2019, pages 501–510, Delft, Netherlands, November 2019.

[256] James Tu, Mengye Ren, Sivabalan Manivasagam, Ming Liang, Bin Yang, Richard Du, Frank

Cheng, and Raquel Urtasun. Physically realizable adversarial examples for lidar object

detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 13716–13725, 2020.

[257] Christopher Urmson, Joshua Anhalt, J. Andrew (Drew) Bagnell, Christopher R. Baker,

Robert E. Bittner, John M. Dolan, David Duggins, David Ferguson, Tugrul Galatali, Hart-

mut Geyer, Michele Gittleman, Sam Harbaugh, Martial Hebert, Thomas Howard, Alonzo

Kelly, David Kohanbash, Maxim Likhachev, Nick Miller, Kevin Peterson, Raj Rajkumar, Paul

Rybski, Bryan Salesky, Sebastian Scherer, Young-Woo Seo, Reid Simmons, Sanjiv Singh,

Jarrod M. Snider, Anthony (Tony) Stentz, William (Red) L. Whittaker, and Jason Ziglar. Tartan

racing: A multi-modal approach to the darpa urban challenge. Technical report, Carnegie

Mellon University, Pittsburgh, PA, April 2007.

[258] Raquel Urtasun, David J Fleet, and Pascal Fua. 3d people tracking with gaussian process

dynamical models. In 2006 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’06), pages 238–245. IEEE, 2006.

BIBLIOGRAPHY 128

[259] Raquel Urtasun, David J. Fleet, and Pascal Fua. Temporal motion models for monocular and

multiview 3D human body tracking. CVIU, 104(2):157–177, 2006.

[260] Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.

Advances in Neural Information Processing Systems, 34:11287–11302, 2021.

[261] Jur Van den Berg, Ming Lin, and Dinesh Manocha. Reciprocal velocity obstacles for real-time

multi-agent navigation. In 2008 IEEE international conference on robotics and automation,

pages 1928–1935. Ieee, 2008.

[262] Kiran Varanasi, Andrei Zaharescu, Edmond Boyer, and Radu Horaud. Temporal surface

tracking using mesh evolution. In Proceedings of the European Conference on Computer

Vision (ECCV), pages 30–43. Springer, 2008.

[263] Gül Varol, Duygu Ceylan, Bryan Russell, Jimei Yang, Ersin Yumer, Ivan Laptev, and Cordelia

Schmid. BodyNet: Volumetric inference of 3D human body shapes. In ECCV, 2018.

[264] Gül Varol, Ivan Laptev, and Cordelia Schmid. Long-term temporal convolutions for action

recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI),

40(6):1510–1517, 2017.

[265] Gül Varol, Ivan Laptev, Cordelia Schmid, and Andrew Zisserman. Synthetic humans for action

recognition from unseen viewpoints. International Journal of Computer Vision, 129(7):2264–

2287, 2021.

[266] Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J Black, Ivan Laptev,

and Cordelia Schmid. Learning from synthetic humans. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 109–117, 2017.

[267] Sundar Vedula, Simon Baker, Peter Rander, Robert Collins, and Takeo Kanade. Three-

dimensional scene flow. In Proceedings of the IEEE/CVF International Conference on

Computer Vision (ICCV), 1999.

[268] Sai Vemprala and Ashish Kapoor. Adversarial attacks on optimization based planners. In

2021 IEEE International Conference on Robotics and Automation (ICRA), pages 9943–9949.

IEEE, 2021.

[269] Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business

Media, 2008.

BIBLIOGRAPHY 129

[270] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural

computation, 23(7):1661–1674, 2011.

[271] Matt Vitelli, Yan Chang, Yawei Ye, Maciej Wołczyk, Błażej Osiński, Moritz Niendorf, Hugo

Grimmett, Qiangui Huang, Ashesh Jain, and Peter Ondruska. Safetynet: Safe planning for real-

world self-driving vehicles using machine-learned policies. arXiv preprint arXiv:2109.13602,

2021.

[272] Eric A Wan and Rudolph Van Der Merwe. The unscented kalman filter for nonlinear estimation.

In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications,

and Control Symposium (Cat. No. 00EX373), pages 153–158. Ieee, 2000.

[273] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin, Shuran Song, and Leonidas J

Guibas. Normalized object coordinate space for category-level 6d object pose and size

estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 2642–2651, 2019.

[274] Jack M. Wang. Gaussian process dynamical models for human motion. Master’s thesis,

University of Toronto, 2005.

[275] Jack M Wang, David J Fleet, and Aaron Hertzmann. Gaussian process dynamical models for

human motion. IEEE transactions on pattern analysis and machine intelligence, 30(2):283–

298, 2007.

[276] Jingkang Wang, Ava Pun, James Tu, Sivabalan Manivasagam, Abbas Sadat, Sergio Casas,

Mengye Ren, and Raquel Urtasun. Advsim: Generating safety-critical scenarios for self-

driving vehicles. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 9909–9918, 2021.

[277] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang.

Pixel2mesh: Generating 3d mesh models from single rgb images. In Proceedings of the

European Conference on Computer Vision (ECCV), 2018.

[278] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M

Solomon. Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics,

38(5):1–12, 2019.

BIBLIOGRAPHY 130

[279] Zirui Wang, Shuda Li, Henry Howard-Jenkins, Victor Prisacariu, and Min Chen. Flownet3d++:

Geometric losses for deep scene flow estimation. In IEEE Winter Conference on Applications

of Computer Vision (WACV), pages 91–98, 2020.

[280] Xinshuo Weng and Kris Kitani. A baseline for 3d multi-object tracking. arXiv preprint

arXiv:1907.03961, 1(2):6, 2019.

[281] Jungdam Won, Deepak Gopinath, and Jessica Hodgins. Physics-based character controllers

using conditional vaes. ACM Transactions on Graphics (TOG), 41(4):1–12, 2022.

[282] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference

on computer vision (ECCV), pages 3–19, 2018.

[283] Donglai Xiang, Hanbyul Joo, and Yaser Sheikh. Monocular total capture: Posing face, body,

and hands in the wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 10965–10974, 2019.

[284] Danfei Xu, Yuxiao Chen, Boris Ivanovic, and Marco Pavone. Bits: Bi-level imitation for

traffic simulation. arXiv preprint arXiv:2208.12403, 2022.

[285] Dongseok Yang, Doyeon Kim, and Sung-Hee Lee. LoBSTr: Real-time Lower-body Pose

Prediction from Sparse Upper-body Tracking Signals. Computer Graphics Forum, 2021.

[286] Gengshan Yang, Minh Vo, Natalia Neverova, Deva Ramanan, Andrea Vedaldi, and Hanbyul

Joo. Banmo: Building animatable 3d neural models from many casual videos. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2863–2873,

2022.

[287] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath Hariharan.

Pointflow: 3d point cloud generation with continuous normalizing flows. In Proceedings of

the IEEE/CVF International Conference on Computer Vision (ICCV), pages 4541–4550, 2019.

[288] Zhangsihao Yang, Or Litany, Tolga Birdal, Srinath Sridhar, and Leonidas Guibas. Continuous

geodesic convolutions for learning on 3d shapes. In IEEE Winter Conference on Applications

of Computer Vision (WACV), 2021.

[289] Vickie Ye, Georgios Pavlakos, Jitendra Malik, and Angjoo Kanazawa. Decoupling human and

camera motion from videos in the wild. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2023.

BIBLIOGRAPHY 131

[290] Zi Jian Yew and Gim Hee Lee. Rpm-net: Robust point matching using learned features.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pages 11824–11833, 2020.

[291] Hongwei Yi, Chun-Hao P. Huang, Shashank Tripathi, Lea Hering, Justus Thies, and Michael J.

Black. MIME: Human-aware 3D scene generation. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2023.

[292] Hongwei Yi, Chun-Hao P. Huang, Dimitrios Tzionas, Muhammed Kocabas, Mohamed Hassan,

Siyu Tang, Justus Thies, and Michael J. Black. Human-aware object placement for visual

environment reconstruction. In Computer Vision and Pattern Recognition (CVPR), pages

3959–3970, June 2022.

[293] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-based 3d object detection and

tracking. In Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, pages 11784–11793, 2021.

[294] Wenhao Yu, Greg Turk, and C. Karen Liu. Learning symmetric and low-energy locomotion.

ACM Transactions on Graphics (TOG), 37:1 – 12, 2018.

[295] Ye Yuan and Kris Kitani. Dlow: Diversifying latent flows for diverse human motion prediction.

In European Conference on Computer Vision, pages 346–364. Springer, 2020.

[296] Ye Yuan, Jiaming Song, Umar Iqbal, Arash Vahdat, and Jan Kautz. Physdiff: Physics-guided

human motion diffusion model. arXiv preprint arXiv:2212.02500, 2022.

[297] Ye Yuan, Shih-En Wei, Tomas Simon, Kris Kitani, and Jason Saragih. Simpoe: Simulated

character control for 3d human pose estimation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), 2021.

[298] Ye Yuan, Xinshuo Weng, Yanglan Ou, and Kris Kitani. Agentformer: Agent-aware transform-

ers for socio-temporal multi-agent forecasting. In Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), 2021.

[299] Sergey Zakharov, Wadim Kehl, Arjun Bhargava, and Adrien Gaidon. Autolabeling 3d objects

with differentiable rendering of sdf shape priors. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pages 12224–12233, 2020.

BIBLIOGRAPHY 132

[300] Andrei Zanfir, Eduard Gabriel Bazavan, Hongyi Xu, William T Freeman, Rahul Sukthankar,

and Cristian Sminchisescu. Weakly supervised 3d human pose and shape reconstruction with

normalizing flows. In European Conference on Computer Vision, pages 465–481. Springer,

2020.

[301] Andrei Zanfir, Elisabeta Marinoiu, and Cristian Sminchisescu. Monocular 3d pose and shape

estimation of multiple people in natural scenes-the importance of multiple scene constraints.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

2148–2157, 2018.

[302] Wenyuan Zeng, Wenjie Luo, Simon Suo, Abbas Sadat, Bin Yang, Sergio Casas, and Raquel

Urtasun. End-to-end interpretable neural motion planner. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 8660–8669, 2019.

[303] Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, and

Karsten Kreis. Lion: Latent point diffusion models for 3d shape generation. In Advances in

Neural Information Processing Systems (NeurIPS), 2022.

[304] Chaoyun Zhang, Marco Fiore, Iain Murray, and Paul Patras. Cloudlstm: A recurrent neural

model for spatiotemporal point-cloud stream forecasting. arXiv preprint arXiv:1907.12410,

2019.

[305] Jason Y Zhang, Panna Felsen, Angjoo Kanazawa, and Jitendra Malik. Predicting 3d human

dynamics from video. In Proceedings of the IEEE/CVF International Conference on Computer

Vision, pages 7114–7123, 2019.

[306] Linfeng Zhang, Lei Wang, et al. Monge-ampere flow for generative modeling. arXiv preprint

arXiv:1809.10188, 2018.

[307] Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou Hong, Xinying Guo, Lei Yang, and

Ziwei Liu. Motiondiffuse: Text-driven human motion generation with diffusion model. arXiv

preprint arXiv:2208.15001, 2022.

[308] Shiwen Zhang, Sheng Guo, Weilin Huang, Matthew R. Scott, and Limin Wang. V4d: 4d

convonlutional neural networks for video-level representation learning. In Proceedings of the

International Conference on Learning Representations (ICLR), 2020.

BIBLIOGRAPHY 133

[309] Tianshu Zhang, Buzhen Huang, and Yangang Wang. Object-occluded human shape and

pose estimation from a single color image. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2020.

[310] Xiaohan Zhang, Bharat Lal Bhatnagar, Sebastian Starke, Vladimir Guzov, and Gerard Pons-

Moll. Couch: Towards controllable human-chair interactions. In European Conference on

Computer Vision (ECCV). Springer, October 2022.

[311] Yan Zhang, Michael J Black, and Siyu Tang. We are more than our joints: Predicting how 3d

bodies move. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 3372–3382, 2021.

[312] Yan Zhang and Siyu Tang. The wanderings of odysseus in 3d scenes. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 20481–20491,

2022.

[313] Yongheng Zhao, Tolga Birdal, Haowen Deng, and Federico Tombari. 3d point capsule

networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1009–1018, 2019.

[314] Ziyuan Zhong, Davis Rempe, Danfei Xu, Yuxiao Chen, Sushant Veer, Tong Che, Baishakhi

Ray, and Marco Pavone. Guided conditional diffusion for controllable traffic simulation.

International Conference on Robotics and Automation (ICRA), 2023.

	Abstract
	Acknowledgments
	Introduction
	Motion Modeling for Perception and Generation
	Modeling Motion and Accompanying Challenges
	Perceiving Motion

	Thesis Outline and Contributions

	3D Human Motion Models for Pose Estimation
	Introduction
	Related Work
	HuMoR: 3D Human Dynamics Model
	Training

	Test-time Motion Optimization
	Optimization Variables
	Objective & Optimization

	Experimental Results
	Datasets
	Baselines and Evaluation Metrics
	Generative Model Evaluation
	Estimation from 3D Observations
	Estimation from RGB(-D) Observations

	Discussion
	Additional Related Contributions
	Physics-Based Human Motion Modeling

	Modeling 3D Object Motion for Point Cloud Perception
	Introduction
	Related Work
	Background
	Method
	Network Architecture

	Experimental Evaluations
	Evaluations and Applications

	Discussion
	Additional Related Contributions
	Spatiotemporal Modeling for 3D Object Tracking
	Predicting the Future Motion of 3D Objects

	Learned Traffic Model for Scenario Generation
	Introduction
	Related Work
	Challenging Scenario Generation
	Modeling ``Realism'': Learned Traffic Model
	Adversarial Optimization

	Analyzing and Using Generated Scenarios
	Filtering and Collision Classification
	Improving the Planner

	Experiments
	Scenario Generation Evaluation
	Analyzing Generated Scenarios
	Improving Rule-Based Planner
	Traffic Model Prediction Evaluation

	Discussion

	Controllable Trajectory Generation
	Introduction
	Related Work
	Method
	Controllable Trajectory Diffusion
	Physics-Based Pedestrian Animation
	Controllable Pedestrian Animation System

	Experiments
	Augmenting Crowd Simulation
	Real-world Data Evaluation
	Controllable Pedestrian Animation

	Discussion
	Additional Related Contributions
	Controllable Traffic Generation

	Conclusion and Future Vision
	Bibliography

