Simple models for secondcolumn retention-time variability across peaks from GCxGC

Stephen E. Reichenbach^{1,2}, **Davis W. Rempe**¹, Qingping Tao², and Chiara Cordero³

¹University of Nebraska-Lincoln (Lincoln NE, USA) ²GC Image, LLC (Lincoln NE, USA) ³Università degli Studi di Torino (Torino, Italy)

8th Multidimensional Chromatography Workshop Toronto ON, Canada, January 5-6, 2017

Background

- Second-dimension (²D) separations of analytes create multiple 1D peaks across the first-dimension (¹D)
- ²D chromatograms form columns of the 2D image
- ²D peaks from each compound form 2D blobs

tes create (¹D) mage **bs**

	×
	×
umn II 🗸	⇔
nd	
28.000	
28.067	
28,133	
	>
ection Line	2
3	÷
0	÷
r:	
- Value	Мар
29.0 te:	

Motivation

- Ideally, a compound's ²D peaks identical ²D retention times
- In practice, that is not always the case
- Shifting ²D retention times pose problems for processing, e.g., blob detection & alignment

Motivation (2)

- **Question**: What factors relate to retention-time (RT) variability within a blob from one ²D chromatogram to the next?
- Establish most important parameters to predict RT shift through simple models that are:
 - Easily implemented
 - Robust

Outline

- BackgroundMotivation
- Analysis
- Results
- Conclusion

Outline

BackgroundMotivation

Analysis

- Results
- Conclusion

Data Analysis Overview

- For chromatograms of interest:
 - Measure ²D RT shifts within analyte blobs
 - Assess relationships between ²D shifts and ²D peak attributes
 - Build models based on relationships:
 - Univariate, bivariate
 - Linear, quadratic
 - How well do models predict shift?
- 4 different GCxGC datasets
 - Calibration
 - Chemical-Agents
 - Temperature-Ramp
 - Gas-Pressure

Datasets: Calibration

- 25 GCxGC chromatograms with varying concentrations
 - Five replicate runs for each of five calibration vials for ASTM D5580-02, "Standard Test Method for Determination of Benzene, Toluene, Gasoline by Gas Chromatography"

Datasets: Chemical-Agents

• 3 GCxGC chromatograms, each with different composition

3.0 2.0 1.0 1.0 0.0

Datasets: Temperature-Ramp

 10 GCxGC chromatograms, each with different temperature-ramp rates (from 2 to 11 °C/min)

Datasets: Gas-Pressure

 8 GCxGC chromatograms, each with different inlet gas pressure (from 17 to 24 psi)

Analysis Metric

- RT difference is the dependent variable
- Relationship to various independent variables
- RT difference for consecutive ²D peaks, f_0 and f_1 , is relative shift that maximizes cross-correlation:

$$\Delta t = \max_{s} \sum_{i=-n}^{n} \left(\overline{f_0}(i) \cdot \overline{f_1}(i+s) \right)$$

- f(i) is standardized detector response (intensity)
- i = 0 is apex, and $n = 2 \cdot {}^2 \sigma$
- Δt values shown here are normalized by blob's $^{2}\sigma$

Analysis Metric (2)

- Compute Δt for
 - Increasing: ²D peak previous to apex and ²D apex peak ($f_1 \& f_0$)
 - Decreasing: ²D apex peak and next ²D peak following apex ($f_0 \& f_1$)
- f_0 is always the apex peak

ak ($f_1 \& f_0$) apex ($f_0 \& f_1$)

Legend	
Loc @ 176.000	
Loc @ 177.000	
200 @ 170.000	
< >	•
< >	•
< > Projection Lines: 3	•
< > Projection Lines: 3	
Projection Lines: 3 Gap: 0	
Projection Lines: 3 Gap: 0 Color:	

Factors Considered

- Primary independent variables
 - Retention time at apex (${}^{1}t_{r}$ and ${}^{2}t_{r}$)
 - Total intensity of each peak ($^{2}\eta_{0}$ and $^{2}\eta_{1}$)
 - Standard-deviation width of each peak ($^{2}\sigma_{0}$ and $^{2}\sigma_{1}$)
 - Skewness of each peak ($^{2}\gamma_{0}$ and $^{2}\gamma_{1}$)
- Secondary variables from combining primary variables
 - Difference of total intensities $(^2\eta_0 ^2\eta_1)$
 - Difference of standard deviation widths ($^{2}\sigma_{0}$ $^{2}\sigma_{1}$)
 - Difference of skewness values ($^{2}\gamma_{0} ^{2}\gamma_{1}$)

Simple Models

- Fit models for RT difference vs. various factors
 - Linear, low-order polynomial, both univariate, bivariate, e.g.:
 - $\Delta t_{est} = a \times {}^{2}\eta_{0} + b$ [Linear, univariate]
 - $\Delta t_{est} = a \times (2\eta_0)^2 + b \times 2\eta_0 + c$ [Quadratic, univariate]
 - $\Delta t_{est} = a \times {}^{2}\eta_{0} + b \times {}^{2}\eta_{1} + c$ [Linear, bivariate]
- Predict RT difference between two peaks
- Variability across dataset is root-mean-square (RMS) of **RT** differences of multiple peaks
- Measure reduction in RMS for each model

Outline

- Background
- Motivation
- Analysis
- Results
- Conclusion

Constant Model (from mean RT shift)

- Mean RT shift of peak-pairs builds "constant" model
 - $\Delta t_{est} = \Delta t_{avg}$
- Small RMS reduction using all pairs of ²D peaks
- Improvement using separate constant models for:
 - Increasing: previous \rightarrow apex
 - Decreasing: apex \rightarrow next

		All Pairs		Incre	asing Inte	nsity	Decreasing Intensity			
Dataset	RMS	Mean	St.Dev.	RMS	Mean	St.Dev.	RMS	Mean	St.Dev.	
Calibration	0.92	-0.39	0.83	0.57	0.33	0.47	1.12	-0.99	0.53	
Chem.Agts.	0.45	-0.04	0.45	0.38	0.30	0.24	0.51	-0.38	0.34	
Temp.Ramp	0.51	-0.07	0.50	0.44	0.32	0.31	0.57	-0.46	0.33	
Gas-Press.	1.01	-0.10	1.01	0.84	0.72	0.43	1.17	-1.04	0.55	

T shift) " model

aks Is for:

Independent Variables

Investigated relationships for all primary variables ullet

Secondary Independent Variables

- Investigated several secondary variables
- Difference of total intensities ($^{2}\eta_{0} ^{2}\eta_{1}$) promising

Linear, Univariate Models

- For linear, univariate models, computed RMS improvement
- Intensity difference performed well, with 60% decrease
 - $\Delta t_{est} = a \times ({}^{2}\eta_{0} {}^{2}\eta_{1}) + b$

	Calib	Calibration		Chem.Agts.		.Ramp	Gas I	Press.	Average			%Impr.
Model	Prev	Next	Prev	Next	Prev	Next	Prev	Next	Prev	Next	All	All
None	0.57	1.12	0.38	0.51	0.44	0.57	0.84	1.17	0.56	0.84	0.70	
Mean	0.47	0.53	0.24	0.34	0.31	0.33	0.43	0.55	0.36	0.44	0.40	43%
$^{1}t_{R}$	0.46	0.52	0.22	0.32	0.31	0.30	0.42	0.55	0.35	0.42	0.39	45%
$^{2}t_{R}$	0.46	0.48	0.21	0.34	0.29	0.33	0.43	0.55	0.35	0.42	0.39	45%
² η ₀	0.35	0.46	0.21	0.34	0.29	0.30	0.42	0.52	0.32	0.40	0.36	48%
$^{2}\eta_{1}$	0.44	0.52	0.23	0.31	0.28	0.30	0.34	0.46	0.32	0.40	0.36	49%
$^{2}\sigma_{0}$	0.31	0.42	0.22	0.33	0.29	0.33	0.43	0.55	0.31	0.41	0.36	49%
$^{2}\sigma_{1}$	0.32	0.43	0.23	0.34	0.30	0.33	0.41	0.47	0.32	0.39	0.35	50%
$^{2}\gamma_{0}$	0.36	0.40	0.23	0.33	0.30	0.33	0.42	0.49	0.33	0.39	0.36	49%
$^{2}\gamma_{1}$	0.34	0.39	0.23	0.34	0.31	0.33	0.39	0.50	0.32	0.39	0.35	50%
$^{2}\eta_{0}-^{2}\eta_{1}$	0.29	0.41	0.18	0.29	0.23	0.21	0.28	0.35	0.25	0.31	0.28	60%
${}^{2}\sigma_{0}$ - ${}^{2}\sigma_{1}$	0.42	0.49	0.20	0.27	0.30	0.33	0.27	0.28	0.30	0.34	0.32	54%
$2\gamma_0 - 2\gamma_1$	0.30	0.31	0.24	0.32	0.30	0.32	0.37	0.43	0.30	0.34	0.32	54%

decrease

Linear, Bivariate Models

- For linear, bivariate models, computed RMS improvement
- Best bivariate models averaged 64-66% RMS reduction
 - Little better than 60% for best linear univariate model ($^2\eta_0 ^2\eta_1$)
- Additional complexity, more susceptible to over-fitting

	Calibration		Chem.Agts.		Temp.Ramp		Gas Press.		Average			%Impr.
Model	Prev	Next	Prev	Next	Prev	Next	Prev	Next	Prev	Next	All	All
None	0.57	1.12	0.38	0.51	0.44	0.57	0.84	1.17	0.56	0.84	0.70	
$^{2}\eta_{0},^{2}\eta_{1}$	0.27	0.39	0.17	0.25	0.20	0.19	0.19	0.30	0.21	0.28	0.24	65%
$^{2}t_{R}^{2}, ^{2}\eta_{0}^{-2}\eta_{1}$	0.27	0.31	0.18	0.26	0.21	0.21	0.28	0.32	0.24	0.27	0.25	64%
$^{2}\sigma_{1}, ^{2}\eta_{0} - ^{2}\eta_{1}$	0.22	0.36	0.17	0.29	0.22	0.21	0.28	0.28	0.22	0.29	0.25	64%
$^{2}\gamma_{0},^{2}\eta_{0}-^{2}\eta_{1}$	0.25	0.34	0.17	0.27	0.23	0.21	0.28	0.33	0.23	0.29	0.26	63%
$^{2}\gamma_{1},^{2}\eta_{0}-^{2}\eta_{1}$	0.24	0.34	0.17	0.29	0.23	0.21	0.22	0.32	0.22	0.29	0.25	64%
$^{2}\eta_{0}-^{2}\eta_{1},^{2}\sigma_{0}-^{2}\sigma_{1}$	0.23	0.36	0.18	0.26	0.23	0.21	0.22	0.24	0.22	0.27	0.24	66%
$\boxed{{}^2\eta_0} - {}^2\eta_1, {}^2\gamma_0 - {}^2\gamma_1$	0.22	0.28	0.18	0.27	0.23	0.20	0.22	0.29	0.21	0.26	0.24	66%

S reduction $(^{2}\eta_{0} - ^{2}\eta_{1})$ ver-fitting

Higher-Order Models

- Investigated higher-order models (e.g., quadratic)
- Some, but not large improvements
- Same drawbacks as bivariate models: complexity & risk of overfitting

Results Summary

- Linear, univariate model using intensity difference between peaks (${}^{2}\eta_{0} - {}^{2}\eta_{1}$) is good predictor
 - 60% improvement in RMS
- Bivariate and higher-order models provide only modest further improvement
 - May not be worth complexity & risk of over-fitting, depending on individual circumstances

	Univar	riate Intensi	nce (²η ₀ –²η ₁)	Bivariate Intensities ($^{2}\eta_{0}$, $^{2}\eta_{1}$)							
Dataset	Increas	ing Pairs	Decre	asing Pairs	Increa	sing Pairs	Decreasing Pairs				
	Linear	Quadratic	Linear	Quadratic	Linear	Quadratic	Linear	Quadratic			
Calibration	0.29	0.24	0.41	0.38	0.27	0.21	0.39	0.33			
Chem.Agts.	0.18	0.17	0.29	0.29	0.17	0.15	0.25	0.22			
Temp.Ramp	0.23	0.22	0.21	0.20	0.20	0.18	0.19	0.16			
Gas-Press.	0.28	0.27	0.35	0.34	0.19	0.17	0.30	0.27			

Outline

- Background
- Motivation
- Analysis
- Results
- Conclusion

Conclusion

- Analyzed RT shift in blobs for multiple datasets, and it's relationship to peak/blob characteristics
- Univariate, linear model using intensity difference $(^{2}\eta_{0} - ^{2}\eta_{1})$ is simple, but effective predictor
- Promising for applications such as ion blob detection
 - · Work in progress, testing & refining with more complex data

a) No prediction model

b) Using prediction model

Application: Ion Blob Detection

- Goal: Detect 2D blobs for individual ions in GCxGC-MS
- Use linear (${}^{2}\eta_{0} {}^{2}\eta_{1}$) model to predict RT shift during ion blob detection
- Avoid detecting multiple blobs when large shift in RT
- Example: should be single compound blob

8th MDC Workshop Toronto ON, Canada, January 5-6, 2017

Application: Ion Blob Detection (2)

- Implemented as part of modified watershed algorithm:
 - Perform ²D peak detection
 - Fit increasing/decreasing linear models based on selected ²D peakpairs
 - Detect 2D blobs based on model

a) No prediction model

8th MDC Workshop Toronto ON, Canada, January 5-6, 2017

b) Using prediction model